Abstract:
A dual orientation connector having a connector tab with first and second major opposing sides and a plurality of electrical contacts carried by the connector tab. The plurality of contacts includes a first set of external contacts formed at the first major side and a second set of external contacts formed at the second major side. Each individual contact in the first plurality of contacts is electrically connected within the tab or body to a corresponding contact in the second plurality of contacts. In some embodiments contacts in the first and second pluralities of contacts that are directly opposite each other are coupled together. In some other embodiments, contacts in the first and second pluralities of contacts that are in a cater cornered relationship with each other are coupled together. The first plurality of contacts are symmetrically spaced with the second plurality of contacts and the connector tab is shaped to have 180 degree symmetry so that it can be inserted and operatively coupled to a corresponding receptacle connector in either of two insertion orientations.
Abstract:
Methods and systems for improved efficiency when an inductive power transmitter associated with an inductive power transfer system experiences a low-load or no-load condition. More particularly, methods and systems for detecting when an inductive power receiver is absent or poorly connected to an inductive power transmitter. The inductive power transmitter includes, in one example, a current peak monitor coupled to an inductive power transmit coil. The current peak monitor waits for a current peak resulting from spatial displacement of a magnetic field source within the inductive power receiver, indicating to the inductive power transmitter that the inductive power receiver is moving, or has moved, toward the inductive power transmitter. Other examples include one or more Hall effect sensors within the inductive power transmitter to monitor for the magnetic field source of the inductive power receiver.
Abstract:
An aesthetically pleasing universal dock may support a variety of electronic devices of different shapes and designs while appearing to be customized to individually support each electronic device. The universal dock may support an electronic device using a support layer that may include any suitable material, including, for example, an array of vertical members, an elastic sponge-like substance, or any other suitable material. The compression of the support layer may be retained for future use with the electronic device, or the compression may be relieved, once the electronic device is removed from the universal dock.
Abstract:
Techniques for performing high-voltage charging of electronic devices are provided. A portable device can communicate with a power supply over a data communication line to determine if the power supply is capable of performing the high-voltage charging operation. If yes, the portable device instructs the power supply to provide a specific voltage.
Abstract:
Methods and systems for powering-off a wireless communication device from a linked device are provided. A device can transmit a wireless communication signal to a linked device to instruct the linked device to power-off. In this manner, the user need only turn off one device manually which results in all linked devices being powered off. This process can be initiated by a user through a device directly linked with the device to be powered-off or through a device that is indirectly connected, through one or more wireless communication networks, with the device to be powered-off. This process can also be automatically initiated by a device when a set of predetermined conditions exist. Once instructed to do so, a device can initiate a predetermined power-off process which can involve terminating any ongoing functions and turning off various subsystems. In accordance with the present invention, a user can initiate a power-off of all the devices on a wireless communication network through a single device.
Abstract:
Methods and apparatuses for communicating across an inductive charging interface. Methods and apparatuses for improved efficiency of power transfer across an inductive charging interface.
Abstract:
A retail electronic product demonstration fixture for demonstrating portable electronic devices. The product demonstration fixture may include an exhibition portion and a base portion. A portable electronic device offered for sale may be affixed to the exhibition portion. The base portion may include an electronic display, an auxiliary battery, and an auxiliary controller. The auxiliary controller may direct power from the auxiliary battery to the electronic display upon determining that a battery within the electronic display has fallen below a particular selected level. Similarly the auxiliary controller may direct power from the auxiliary battery to the portable electronic device offered for sale upon determining that a battery within the portable electronic device has fallen below a selected level.
Abstract:
A dual orientation connector having a connector tab with first and second major opposing sides and a plurality of electrical contacts carried by the connector tab. The plurality of contacts includes a first set of external contacts formed at the first major side and a second set of external contacts formed at the second major side. Each individual contact in the first plurality of contacts is electrically connected within the tab or body to a corresponding contact in the second plurality of contacts. In some embodiments contacts in the first and second pluralities of contacts that are directly opposite each other are coupled together. In some other embodiments, contacts in the first and second pluralities of contacts that are in a cater cornered relationship with each other are coupled together. The first plurality of contacts are symmetrically spaced with the second plurality of contacts and the connector tab is shaped to have 180 degree symmetry so that it can be inserted and operatively coupled to a corresponding receptacle connector in either of two insertion orientations.
Abstract:
Methods and apparatuses for improved efficiency of power transfer across an inductive charging interface by adaptively changing the impedance of the receive coil in response to changes in load conditions during inductive power transfer are disclosed.
Abstract:
Electronic devices and accessories for electronic devices such as headsets are provided. The electronic devices may produce audio output. The headsets may include earbuds with speakers that play the audio output for a user while the earbuds are located in the user's ears. Circuitry in an electronic device and a headset may be used in evaluating how well the earbuds are sealed to the user's ears. In response to seal quality measurements, informative messages can be generated for the user, overall earbud volume may be increased, balance adjustments may be made to correct for mismatched balance between left and right earbuds, equalization settings may be adjusted, and noise cancellation circuitry settings can be changed. Electrical impedance measurements and acoustic measurements can be used in evaluating seal quality.