Abstract:
In an embodiment, an integrated circuit (IC) may include a circuit block that couples to one or more pins of the IC to communicate and/or receive power on the pins. The circuit block may include a ground connection, which may be electrically insulated/electrically separate from the ground connection of other components of the integrated circuit. In an embodiment, the circuit block may include an ESD protection circuit for the pad coupled to the pin. The IC may include another ESD protection circuit for the pad. The circuit block's ESD protection circuit may be sized for the current that may produced within the circuit block for an ESD event, and the IC's ESD protection circuit may be sized for the current that may be produced from the other components of the IC.
Abstract:
A vertically stacked image sensor having a photodiode chip and a transistor array chip. The photodiode chip includes at least one photodiode and a transfer gate extends vertically from a top surface of the photodiode chip. The image sensor further includes a transistor array chip stacked on top of the photodiode chip. The transistor array chip includes the control circuitry and storage nodes. The image sensor further includes a logic chip vertically stacked on the transistor array chip. The transfer gate communicates data from the at least one photodiode to the transistor array chip and the logic chip selectively activates the vertical transfer gate, the reset gate, the source follower gate, and the row select gate.
Abstract:
In an embodiment, an ESD protection circuit may include an STI-bound SCR and a gated SCR that may be electrically in parallel with the STI-bound SCR. The gated SCR may be perpendicular to the STI-bound SCR in a plane of the semiconductor substrate. In an embodiment, the gated SCR may trigger more quickly and turn on more quickly than the STI-bound SCR. The STI-bound SCR may form the main current path for an ESD event. A low capacitive load with rapid response to ESD events may thus be formed. In an embodiment, the anode of the two SCRs may be shared.
Abstract:
An optical system can include a curved light sensor and an optical system positioned in front of the curved light sensor. The curved light sensor includes a substrate and a patterned stress film formed over at least surface of the substrate.
Abstract:
A vertically stacked image sensor having a photodiode chip and a transistor array chip. The photodiode chip includes at least one photodiode and a transfer gate extends vertically from a top surface of the photodiode chip. The image sensor further includes a transistor array chip stacked on top of the photodiode chip. The transistor array chip includes the control circuitry and storage nodes. The image sensor further includes a logic chip vertically stacked on the transistor array chip. The transfer gate communicates data from the at least one photodiode to the transistor array chip and the logic chip selectively activates the vertical transfer gate, the reset gate, the source follower gate, and the row select gate.
Abstract:
An image sensor includes pixels that accumulate charge during a first integration period and pixels that accumulate charge during shorter second integration periods when an image is captured. The pixels having the shorter second integration period accumulate charge at two or more different times during the first integration period. Charge is read out of the pixels associated with the first integration period at the end of the first integration period, while charge is read out of the pixels having the second integration period at the end of each second integration period.
Abstract:
A method for performing correlated double sampling for a sensor, such as an image sensor. The method includes collecting a first charge corresponding to a first parameter, transferring the first charge to a first storage component, transferring the first charge from the first storage component to a second storage component, resetting the first storage component, transferring the first charge from the second storage component to the first storage component, and reading the first storage component to determine the first charge. The method may be implemented in electronic devices including image sensors.
Abstract:
A vertically stacked image sensor having a photodiode chip and a transistor array chip. The photodiode chip includes at least one photodiode and a transfer gate extends vertically from a top surface of the photodiode chip. The image sensor further includes a transistor array chip stacked on top of the photodiode chip. The transistor array chip includes the control circuitry and storage nodes. The image sensor further includes a logic chip vertically stacked on the transistor array chip. The transfer gate communicates data from the at least one photodiode to the transistor array chip and the logic chip selectively activates the vertical transfer gate, the reset gate, the source follower gate, and the row select gate.
Abstract:
One or more cross-wafer capacitors are formed in an electronic component, circuit, or device that includes stacked wafers. One example of such a device is a stacked image sensor. The image sensor can include two or more wafers, with two wafers that are bonded to each other each including a conductive segment adjacent to, proximate, or abutting a bonding surface of the respective wafer. The conductive segments are positioned relative to each other such that each conductive element forms a plate of a capacitor. A cross-wafer capacitor is formed when the two wafers are attached to each other.
Abstract:
An optoelectronic device includes a semiconductor substrate, having front and back sides and having at least one cavity extending from the back side through the semiconductor substrate into proximity with the front side. At least one optoelectronic emitter is formed on the front side of the semiconductor substrate in proximity with the at least one cavity. A heat-conducting material at least partially fills the at least one cavity and is configured to serve as a heat sink for the at least one optoelectronic emitter.