Abstract:
A method for evaluating a specimen, the method can include positioning an energy dispersive X-ray (EDX) detector at a first position; scanning a flat surface of the specimen by a charged particle beam that exits from a charged particle beam optics tip and propagates through an aperture of an EDX detector tip; detecting, by the EDX detector, x-ray photons emitted from the flat surface as a result of the scanning of the flat surface with the charged particle beam; after a completion of the scanning of the flat surface, positioning the EDX detector at a second position in which a distance between the EDX detector tip and a plane of the flat surface exceeds a distance between the plane of the flat surface and the charged particle beam optics tip; and wherein a projection of the EDX detector on the plane of the flat surface virtually falls on the flat surface when the EDX detector is positioned at the first position and when the EDX detector is positioned at the second position.
Abstract:
A system for electrically testing an object, the system may include a scanning electron microscope that comprises a column; and nano-probe modules that are mechanically connected to the column; wherein the column is configured to illuminate areas of the object, with a beam of charged particles; wherein nano-probes of the nano-probe modules are configured to electrically contact elements of the object, during electrical tests of the object, wherein the elements of the object are located within the areas of the object.
Abstract:
A method for evaluating a specimen, the method can include positioning an energy dispersive X-ray (EDX) detector at a first position; scanning a flat surface of the specimen by a charged particle beam that exits from a charged particle beam optics tip and propagates through an aperture of an EDX detector tip; detecting, by the EDX detector, x-ray photons emitted from the flat surface as a result of the scanning of the flat surface with the charged particle beam; after a completion of the scanning of the flat surface, positioning the EDX detector at a second position in which a distance between the EDX detector tip and a plane of the flat surface exceeds a distance between the plane of the flat surface and the charged particle beam optics tip; and wherein a projection of the EDX detector on the plane of the flat surface virtually falls on the flat surface when the EDX detector is positioned at the first position and when the EDX detector is positioned at the second position.
Abstract:
A system for scanning a plurality of regions of interest of a substrate using one or more charged particle beams, the system comprises: an irradiation module having charged particle optics; a stage for introducing a relative movement between the substrate and the charged particle optics; an imaging module for collecting electrons emanating from the substrate in response to a scanning of the regions of interest by the one or more charged particle beams; and wherein the charged particle optics is arranged to perform countermovements of the charged particle beam during the scanning of the regions of interest thereby countering relative movements introduced between the substrate and the charged particle optics during the scanning of the regions of interest.
Abstract:
A system that may include a first mechanical stage, a second mechanical stage, charged particle beam optics and a controller. The system may charge, with a charged particle beam, a slice of the object. During the charging of the slice the first mechanical stage may introduce a first movement along a first direction, between the object and charged particle beam optics. The charged particle beam optics may scan the slice with the charged particle beam. The scanning of the slice includes performing, by the charged particle optics, a first counter-movement deflection of the charged particle beam to at least partially counter the first movement. The second mechanical stage is configured to introduce a second movement along a second direction, between the object and the charged particle beam optics. Upon a completion of the charging of the slice, the second mechanical stage is configured to perform a first flyback operation.
Abstract:
A system, method and a non-transitory compute readable medium for evaluating a high aspect ratio (HAR) hole having a nanometric scale width and formed in a substrate, including obtaining, during an illumination period, multiple measurement results by an electrostatic measurement device that comprises a probe tip that is placed in proximity to the HAR hole; wherein multiple locations within the HAR hole are illuminated with a beam of charged particles during the illumination period; and processing the multiple measurement results to determine a state of the HAR hole.
Abstract:
A system for scanning a plurality of regions of interest of a substrate using one or more charged particle beams, the system may include: an irradiation module having charged particle optics; a stage for introducing a relative movement between the substrate and the charged particle optics; an imaging module for collecting electrons emanating from the substrate in response to a scanning of the regions of interest by the one or more charged particle beams; and wherein the charged particle optics is arranged to perform countermovements of the charged particle beam during the scanning of the regions of interest thereby countering relative movements introduced between the substrate and the charged particle optics during the scanning of the regions of interest.
Abstract:
A system and a method for evaluating a lithography mask, the system may include: (a) electron optics for directing primary electrons towards a pellicle that is positioned between the electron optics and the lithography mask; wherein the primary electrons exhibit an energy level that allows the primary electrons to pass through the pellicle and to impinge on the lithographic mask; (b) at least one detector for detecting detected emitted electrons and for generating detection signals; wherein detected emitted electrons are generated as a result of an impingement of the primary electrons on the lithographic mask; and (c) a processor for processing the detection signals to provide information about the lithography mask