摘要:
In a process and apparatus for treating produced water, for example for re-use in an oil or bitumen extraction operation of for treating frac water, the produced water flows through a series of treatment units. A portion of the produced water may by-pass one or more of the treatment units but the by-pass portion may be such that the treated water is still acceptable, for example for discharge or reuse. Concentrations of oil and grease, organic carbon, silica, pH or related parameters in the produced water may be monitored and used to control the process or apparatus. Control of the process may involve one or more of altering a by-pass portion, altering the addition of chemicals, and altering the operation of a unit process. The process may be controlled to respond to upset conditions, or such that the concentration of one or more limiting contaminants is near, but not over, a specified maximum for re-use or discharge.
摘要:
An apparatus for separating at least one component from a mixture of a plurality of chemical species is provided. The apparatus comprises a membrane structure comprising a plurality of pores disposed within a matrix material to allow mass transport from a first surface of the membrane structure to a second surface of the membrane structure. The matrix material has a thermal conductivity of at least about 10 W/m/K; and a functional material disposed within at least a portion of the plurality of pores. The functional material has the property of promoting selective transport of at least one species through the membrane structure from the first surface to the second surface.
摘要翻译:提供了一种用于从多种化学物质的混合物中分离至少一种组分的装置。 该装置包括膜结构,其包括设置在基质材料内的多个孔,以允许质量从膜结构的第一表面传输到膜结构的第二表面。 基质材料具有至少约10W / m / K的热导率; 以及设置在所述多个孔的至少一部分中的功能材料。 功能材料具有促进至少一种物质通过膜结构从第一表面到第二表面的选择性输送的性质。
摘要:
A hybrid multichannel porous structure for processing between two fluid streams of different compositions includes a housing and one or more structures disposed within the cavity of the housing in a shell and tube configuration. Each structure includes a body made of a porous, inorganic material and a plurality of channels for processing an optional sweep stream. Each channel is coated with a membrane layer. A feed stream introduced into the housing is in direct contact with the structures such that a gas selectively permeates through the body and into the channels. The gas combines with the sweep stream to form a permeate that exits from each channel. The remaining feed stream forms a retentate that exits from the housing. The feed stream may consist of syngas containing hydrogen gas and the sweep stream may contain nitrogen gas. A power plant that incorporates the hybrid structure is disclosed.
摘要:
A porous membrane structure is disclosed, which includes a porous substrate, a mesoporous, aluminum oxide layer disposed on the substrate; and a relatively thin, continuous, microporous barrier layer disposed on the mesoporous aluminum oxide layer, also formed from aluminum oxide. The membrane is capable of improving hydrogen selectivity within a gas stream, e.g., a synthesis gas composition. Membrane supports containing these structures are also described, as well as gas separation modules, and related processes. Power plants which incorporate the gas separation modules are also disclosed herein.
摘要:
Disclosed herein is an that includes a substrate; and a nanoporous coating disposed thereon; the nanoporous coating having a thickness of about 5 nanometers to about 10 micrometers; where an interface between the substrate and the nanoporous coating is disposed at an angle of about 60 degrees to about 120 degrees to a horizontal; the nanoporous coating being in contact with a liquid; the nanoporous coating being operative to improve the critical heat flux by an amount of about 20% to about 100% over a surface that does not have a nanoporous coating.
摘要:
A membrane structure is provided. The membrane structure includes a polymer layer having a plurality of pores; and a ceramic layer disposed on the polymer layer. The ceramic layer has a plurality of substantially unconnected pores. Each of the substantially unconnected pores is in fluid communication with at least one of the pores of the polymer layer. A method of manufacturing a membrane structure is provided. The method includes the steps of providing a polymer layer having a plurality of pores; and disposing a ceramic layer on the polymer layer. Disposing a ceramic layer includes depositing a metal layer on the polymer layer; and anodizing the metal layer to convert the metal layer into a porous layer. At least one of the depositing step and the anodizing step is performed as a continuous process. Alternatively, at least one of the depositing and the anodizing step is performed as a batch process.
摘要:
A nanostructure array including a nanoporous template and a masking material disposed on the nanoporous template such that a first number of the plurality of nanopores are fully coated while a second number of the plurality of nanopores are not-fully coated by the masking material is provided. The array includes forming nanostructures within the plurality of nanopores that are not-fully coated by the masking material.
摘要:
A porous membrane for separation of carbon dioxide from a fluid stream at a temperature higher than about 200° C. with selectivity higher than Knudsen diffusion selectivity. The porous membrane comprises a porous support layer comprising alumina, silica, zirconia or stabilized zirconia; a porous separation layer comprising alumina, silica, zirconia or stabilized zirconia, and a functional layer comprising a ceramic oxide contactable with the fluid stream to preferentially transport carbon dioxide. In particular, the functional layer may be MgO, CaO, SrO, BaO, La2O3, CeO2, ATiO3, AZrO3, AAl2O4, A1FeO3, A1MnO3, A1CoO3, A1NiO3, A2HfO3, A3CeO3, Li2ZrO3, Li2SiO3, Li2TiO3 or a mixture thereof; wherein A is Mg, Ca, Sr or Ba; A1 is La, Ca, Sr or Ba; A2 is Ca, Sr or Ba; and A3 is Sr or Ba.
摘要:
A syngas cleanup section includes a water-gas shift reactor, a first operation unit and a second operation unit. The first operation unit includes a high permeance membrane with H2/CO2 selectivity in flow communication with the water-gas shift reactor to provide a H2-rich permeate stream and an H2-poor retentate stream. The second operation unit recovers H2 and CO from the retentate stream to produce a single, CO2-rich product stream, the entire content of which has a minimum pressure of at least about 10.0 bar. In one embodiment, the second operation unit includes a membrane with Knudsen selectivity for permeating H2, CO and CO2. In this embodiment, the permeate streams are combined to produce a H2 and CO-rich fuel stream used by a combined cycle power generation unit to produce electricity, and the retentate stream is sent to a catalytic oxidation unit to produce the CO2-rich product stream. In another embodiment, the second operation unit is the catalytic oxidation unit.
摘要:
The present invention concerns a method of reducing fouling of ceramic membranes by adding an effective amount of a tannin polymer to SAGD process water. Additionally, a cationic and/or an anionic flocculant can also be added to treat the process water. Once the process water is treated, the solids are then separated out and the resulting clean process water is then passed through a ceramic membrane. Typically, the tannin polymer used in treating the process water is comprised of a Mannich reaction product of an amine, an aldehyde, and a tannin. The components are reacted at an acidic pH wherein the molar ratio of amine to tannin present is from about 1.5:1-3.0:1. Exemplary tannin/amine/formaldehyde compounds include tannin/melamine/formaldehyde polymers, and tannin/monoethanolamine/formaldehyde polymers.