Abstract:
A computing device is disclosed. The computing device includes a shock mount assembly that is configured to provide impact absorption to sensitive components such as a display and an optical disk drive. The computing device also includes an enclosureless optical disk drive that is housed by an enclosure and other structures of the computing device. The computing device further includes a heat transfer system that removes heat from a heat producing element of the computing device. The heat transfer system is configured to thermally couple the heat producing element to a structural member of the computing device so as to sink heat through the structural member, which generally has a large surface area for dissipating the heat.
Abstract:
An electronic device for providing tactile feedback is provided. The electronic device may provide tactile feedback using any suitable approach, including for example vibration, heat, electrical, visual, or any other type of feedback. The electronic device may provide tactile feedback in response to detecting any particular status of the electronic device, receiving any particular input, or detecting any suitable communication received by the electronic device. For example, the electronic device may provide tactile feedback in response to identifying the current network of the device, the status of a particular electronic device component, or any other electronic device status. As another example, the electronic device may provide tactile feedback in response to receiving a particular type of communication, or in response to receiving a communication from a particular contact. As still another example, the electronic device may provide tactile feedback in response to receiving a particular user input, or to detecting a user's finger on a particular portion of the electronic device.
Abstract:
A method comprising: constructing a master curve plot comprising a plurality of reference curves, each reference curve representing a relationship between volume and temperature for one of a plurality of reference alloy samples having a chemical composition and various predetermined degrees of crystallinity; for an alloy specimen having the chemical composition and an unknown degree of crystallinity, obtaining a curve representing a relationship between volume and temperature thereof; and determining the unknown degree of crystallinity by comparing the curve to the master curve plot.
Abstract:
This invention is directed to mechanical and electromagnetic shielding features of an electronic device case. An electronic device case is formed of two housings, each housing having integrated snaps, channels, or other retaining features used to secure the housings together. The housings additionally include integrated retaining features used to secure electronic components within the device case. The housings and retaining features are formed of amorphous metals or other materials with high elasticities. Because the retaining features necessary to assemble the case and secure the electronic components to the case form integral parts of the housings, no external retaining features are required to assemble the electronic device in the case.
Abstract:
A handheld electronic device may be provided that contains a conductive housing and other conductive elements. The conductive elements may form an antenna ground plane. One or more antennas for the handheld electronic device may be formed from the ground plane and one or more associated antenna resonating elements. Transceiver circuitry may be connected to the resonating elements by transmission lines such as coaxial cables. Ferrules may be crimped to the coaxial cables. A bracket with extending members may be crimped over the ferrules to ground the coaxial cables to the housing and other conductive elements in the ground plane. The ground plane may contain an antenna slot. A dock connector and flex circuit may overlap the slot in a way that does not affect the resonant frequency of the slot. Electrical components may be isolated from the antenna using isolation elements such as inductors and resistors.
Abstract:
A cold worked stainless steel bezel for a portable electronic device is provided. The bezel is secured flush to a housing to form part of the case of the portable electronic device. A brace that includes a slot for receiving a wall extending from the bezel is fixed to the housing. When the bezel engages the housing, the wall of the bezel is inserted in the slot of the brace and releasably held by a spring that engages both the brace and the wall. The bezel can be released by disengaging the spring, (e.g., using a special tool or a magnetic field). Because the bezel is manufactured from cold worked stainless steel, it is hard and resistant to impacts. Cold worked steel also facilitates manufacturing within design constraints and tolerances, and requires very little machining after manufacturing to comply with those constraints.
Abstract:
Examples of portable electronic devices including a piezo actuated vibrator for providing tactile feedback to the user are described. Portable electronic devices according to the present disclosure may include tactile feedback devices, which may be driven by a piezoelectric actuator/vibrator that is operatively coupled to or embedded into the housing of a portable electronic device. In some examples, the housing of the electronic device itself can be made of piezoelectric ceramic material. The piezoelectric element may be coupled to the housing of the product to cause the housing to deflect and/or vibrate. In some examples, the housing of the portable electronic device, which may be a portable media player device, may be configured for placement directly or indirectly in contact with the user's skin such that vibrations of the housing may be felt directly (without audible feedback) by the user.
Abstract:
An electronic device for providing tactile feedback is provided. The electronic device may provide tactile feedback using any suitable approach, including for example vibration, heat, electrical, visual, or any other type of feedback. The electronic device may provide tactile feedback in response to detecting any particular status of the electronic device, receiving any particular input, or detecting any suitable communication received by the electronic device. For example, the electronic device may provide tactile feedback in response to identifying the current network of the device, the status of a particular electronic device component, or any other electronic device status. As another example, the electronic device may provide tactile feedback in response to receiving a particular type of communication, or in response to receiving a communication from a particular contact. As still another example, the electronic device may provide tactile feedback in response to receiving a particular user input, or to detecting a user's finger on a particular portion of the electronic device.
Abstract:
A device having one or more an acoustic modules. The acoustic module includes an acoustic element and a cavity that is acoustically coupled to the acoustic element. The module also includes a first conductive element that is configured to generate a first surface charge on a first region of an interior surface of the cavity. A second conductive element is configured to generate a second surface charge on a second region of the interior surface of the cavity. The first and second charge on the first and second regions of the interior surfaces of the cavity may be selectively applied to facilitate movement of a liquid held within the cavity.
Abstract:
A sealed acoustic port in the housing of an electronic device facilitating the elimination of liquid within the port. The acoustic port may include a heating element that when actuated can expedite the evaporation process of liquids accumulated within the port.