摘要:
A reduced permittivity interlevel dielectric in a semiconductor device arranged between two levels of interconnect. The dielectric comprises a first dielectric layer preferably from a silane source deposited on a first level interconnect to form air gaps at midpoints between adjacent first interconnect structures, a second dielectric containing air gap trenches at spaced intervals across the second dielectric, and a third dielectric formed upon said second dielectric. A second interconnect level is formed on the third dielectric.
摘要:
A interconnect structure is provided having a conductor with enhanced thickness. The conductor includes an upper portion and a lower portion, wherein the lower portion geometry is sufficient to increase the current-carrying capacity beyond that provided by the upper portion. The lower portion is formed by filling a trench within an upper dielectric region, and the upper portion is formed by selectively removing a conductive material from the upper dielectric surface except for regions directly above the lower portion. The upper and lower portions thereby form a conductor of enhanced cross-section which can be produced by modifying a via-etch mask, rather than having to reconfigure and/or move interconnect features formed by a metal mask.
摘要:
An isolation technique is provided for improving the overall planarity of isolation regions relative to adjacent active area silicon mesas. The isolation process results in a trench formed in field regions immediately adjacent the active regions. The trench, however, does not extend entirely across the field region. By preventing large area trenches, substantial dielectric fill material and the problems of subsequent planarization of that fill material is avoided. Accordingly, the present isolation technique does not require conventional fill dielectric normally associated with a shallow trench process. While it achieves the advantages of forming silicon mesas, the present process avoids having to rework dielectric surfaces in large area field regions using conventional sacrificial etchback, block masking and chemical-mechanical polishing. The improved isolation technique hereof utilizes trenches of minimal width etched into the silicon substrate at the periphery of field regions, leaving a field mesa. A field dielectric, preferably oxide, is formed upon the field mesa and fills trenches between the field mesa and active mesas, leaving a substantially planar field dielectric commensurate with the upper surface of adjacent active mesas.
摘要:
An isolation technique is provided for improving the overall planarity of trench isolation regions relative to adjacent silicon mesas. The isolation process results in a spaced plurality of field dielectric having an upper surface substantially coplanar with each other and with adjacent silicon mesa upper surfaces. The isolation process is thereby a planarization process used with the shallow trench technique, wherein etch-enhancing ions are forwarded into the fill dielectric at upper elevational regions of that dielectric. When subjected to a subsequent etchant, the dopants cause the higher elevational regions to be removed at a faster rate than the lower elevational regions. Thus, selective placement of dopants and etch removal pre-conditions the fill dielectric upper surface to a more planar surface globally across the entire wafer. After etch removal predominantly at the higher elevational regions, the remaining fill dielectric upper surface is removed to a level commensurate with the upper surface of silicon mesas thereby producing separate field dielectrics interposed between silicon mesas. The field dielectrics, regardless of their lateral area, each have a substantially planar upper surface at or slightly below the adjoining silicon mesas. By producing planar field dielectric upper surfaces, various problems of non-planarity are removed from the thin films which are thereafter formed on the field dielectrics or between the field dielectrics and silicon mesas.
摘要:
A reduced permittivity interlevel dielectric is provided. The interlevel dielectric is formed between two levels of interconnect. The interlevel dielectric comprises a first dielectric layer formed from a TEOS source deposited on a first level interconnect. The first dielectric contains air gaps at spaced intervals across the first dielectric. A second dielectric, preferably from a silane source is deposited upon said first dielectric. A second interconnect level is then placed on the second dielectric.
摘要:
A method of forming a recessed interconnect structure is provided. The interconnect structure includes several levels of conductors, wherein conductors on one level are staggered with respect to conductors on another level. In densely spaced interconnect areas, interposed conductors are drawn to dissimilar elevational levels to lessen the capacitive coupling between the interconnects. By staggering every other interconnect line in the densely patterned areas, the interconnects are capable of carrying a larger amount of current with minimal capacitive coupling therebetween. The method of forming a recessed interconnect structure comprises forming a substantially coplanar set of the first conductors upon a semiconductor substrate, depositing a first dielectric layer on said first conductors, forming a trench in the first dielectric layer, depositing a conductive material in the trench, planarizing the conductive material an upper surface of the conductive material is substantially coplanar with an upper surface of the first dielectric, etching the conductive material until the upper surface of the conductive material is displaced below the upper surface of the first dielectric, forming a second dielectric on the conductive material and the first dielectric layer.
摘要:
A photolithography mask derivation process is provided for improving the overall planarity of interlevel dielectric deposited upon conductors formed by the derived photolithography mask. The photolithography mask is derived such that non-operational conductors are spaced a minimum distance from each other and from operational conductors to present a regular spaced arrangement of conductors upon which a dielectric layer can be deposited and readily planarized using, for example, chemical-mechanical polishing techniques. The resulting interlevel dielectric upper surface is globally planarized to an even elevational level across the entire semiconductor topography. The operational conductors are dissimilar from non-operational conductors in that the operational conductors are connected within a circuit path of an operational integrated circuit. Non-operational conductors are not connected within the integrated circuit path and generally are floating or are connected to a power supply. The non-operational conductors thereby do not contribute to the integrated circuit functionality other than to provide structural planarity to the overlying interlevel dielectric. The mask derivation process is applicable to either a metal interconnect photolithography mask or a polysilicon interconnect photolithography mask.
摘要:
A photolithography mask derivation process is provided for improving the overall planarity of interlevel dielectric deposited upon conductors formed by the derived photolithography mask. The photolithography mask is derived such that non-operational conductors are spaced a minimum distance from each other and from operational conductors to present a regular spaced arrangement of conductors upon which a dielectric layer can be deposited and readily planarized using, for example, chemical-mechanical polishing techniques. The resulting interlevel dielectric upper surface is globally planarized to an even elevational level across the entire semiconductor topography. The operational conductors are dissimilar from non-operational conductors in that the operational conductors are connected within a circuit path of an operational integrated circuit. Non-operational conductors are not connected within the integrated circuit path and generally are floating or are connected to a power supply. The non-operational conductors thereby do not contribute to the integrated circuit functionality other than to provide structural planarity to the overlying interlevel dielectric. The mask derivation process is applicable to either a metal interconnect photolithography mask or a polysilicon interconnect photolithography mask.
摘要:
An integrated circuit is provided having an improved interconnect structure. The interconnect structure includes a power-coupled local interconnect which is always retained at VDD or VSS (i.e., ground) level. The local interconnect resides a dielectric-spaced distance below critical runs of overlying interconnect. The powered local interconnect serves to sink noise transients from the critical conductors to ensure that circuits connected to the conductors do not inoperably function. Accordingly, the local interconnect extends along a substantial portion of the conductor length, and is either wider or narrower than the conductor under which it extends. The local interconnect can either be polysilicon, doped polysilicon, polycide, refractory metal silicide, or multi-level refractory metal.
摘要:
A photolithographic system including a light filter that varies light intensity according to measured dimensional data that characterizes a lens error is disclosed. The light filter compensates for the lens error by reducing the light intensity of the image pattern as the lens error increases. In this manner, when the lens error causes focusing variations that result in enlarged portions of the image pattern, the light filter reduces the light intensity transmitted to the enlarged portions of the image pattern. This, in turn, reduces the rate in which regions of the photoresist layer beneath the enlarged portions of the image pattern are rendered soluble to a subsequent developer. As a result, after the photoresist layer is developed, linewidth variations that otherwise result from the lens error are reduced due to the light filter. Preferably, the light filter includes a light-absorbing film such as a semi-transparent layer such as calcium fluoride on a light-transmitting base such as a quartz plate, and the thickness of the light-absorbing film varies in accordance with the measured dimensional data to provide the desired variations in light intensity. The invention is particularly well-suited for patterning a photoresist layer that defines polysilicon gates of an integrated circuit device.