摘要:
Graded dielectric layers and methods of fabricating such dielectric layers provide dielectrics in a variety of electronic structures for use in a wide range of electronic devices and systems. In an embodiment, a dielectric layer is graded with respect to a doping profile across the dielectric layer. In an embodiment, a dielectric layer is graded with respect to a crystalline structure profile across the dielectric layer. In an embodiment, a dielectric layer is formed by atomic layer deposition incorporating sequencing techniques to generate a doped dielectric material.
摘要:
A method of forming a capacitor includes forming a conductive first capacitor electrode material comprising TiN over a substrate. TiN of the TiN-comprising material is oxidized effective to form conductive TiOxNy having resistivity no greater than 1 ohm·cm over the TiN-comprising material where x is greater than 0 and y is from 0 to 1.4. A capacitor dielectric is formed over the conductive TiOxNy. Conductive second capacitor electrode material is formed over the capacitor dielectric. Other aspects and implementations are contemplated, including capacitors independent of method of fabrication.
摘要翻译:形成电容器的方法包括在衬底上形成包含TiN的导电的第一电容器电极材料。 含TiN材料的TiN被有效地氧化,形成电阻率不大于1欧姆·厘米的电导率TiO x N y,其中x大于0,y为0至1.4。 在导电TiO x N y上形成电容器电介质。 在电容器电介质上形成导电的第二电容器电极材料。 考虑了其他方面和实现方式,包括独立于制造方法的电容器。
摘要:
A method of forming a capacitor includes forming a conductive first capacitor electrode material comprising TiN over a substrate. TiN of the TiN-comprising material is oxidized effective to form conductive TiOxNy having resistivity no greater than 1 ohm·cm over the TiN-comprising material where x is greater than 0 and y is from 0 to 1.4. A capacitor dielectric is formed over the conductive TiOxNy. Conductive second capacitor electrode material is formed over the capacitor dielectric. Other aspects and implementations are contemplated, including capacitors independent of method of fabrication.
摘要翻译:形成电容器的方法包括在衬底上形成包含TiN的导电的第一电容器电极材料。 含TiN材料的TiN被有效地氧化,形成电阻率不大于1欧姆·厘米的电导率TiO x N y,其中x大于0,y为0至1.4。 在导电TiO x N y上形成电容器电介质。 在电容器电介质上形成导电的第二电容器电极材料。 考虑了其他方面和实现方式,包括独立于制造方法的电容器。
摘要:
A method of forming a plurality of capacitors includes an insulative material received over a capacitor array area and a circuitry area. The array area comprises a plurality of capacitor electrode openings within the insulative material received over individual capacitor storage node locations. The intervening area comprises a trench. Conductive metal nitride-comprising material is formed within the openings and against a sidewall portion of the trench to less than completely fill the trench. Inner sidewalls of the conductive material within the trench are annealed in a nitrogen-comprising atmosphere. The insulative material within the array area is etched with a liquid etching solution effective to expose outer sidewall portions of the conductive material within the array area. The conductive material within the array area is incorporated into a plurality of capacitors.
摘要:
A capacitor includes a first capacitor electrode which includes conductive metal. A second capacitor electrode is spaced from the first capacitor electrode. A capacitor dielectric region is received between the first and second capacitor electrodes. Such region comprising a first portion oxide material of a first density over the first capacitor electrode, and a second portion oxide material of a second density received over the first portion. The oxide-comprising material of the first portion and the oxide-comprising material of the second portion are the same in chemical composition and the second density is greater than the first density.
摘要:
The invention includes constructions having two dielectric layers over a conductively-doped semiconductive material. One of the dielectric layers contains aluminum oxide, and the other contains a metal oxide other than aluminum oxide (such metal oxide can be, for example, one or more of hafnium oxide, tantalum oxide, titanium oxide and zirconium oxide). The layer containing aluminum oxide is between the layer containing metal oxide and the conductively-doped semiconductive material. The invention includes capacitor devices having one electrode containing conductively-doped silicon and another electrode containing one or more metals and/or metal compounds. At least two dielectric layers are formed between the two capacitor electrodes, with one of the dielectric layers containing aluminum oxide and the other containing a metal oxide other than aluminum oxide. The invention also includes methods of forming capacitor constructions.
摘要:
A method of forming a capacitor includes forming a conductive metal first electrode layer over a substrate, with the conductive metal being oxidizable to a higher degree at and above an oxidation temperature as compared to any degree of oxidation below the oxidation temperature. At least one oxygen containing vapor precursor is fed to the conductive metal first electrode layer below the oxidation temperature under conditions effective to form a first portion oxide material of a capacitor dielectric region over the conductive metal first electrode layer. At least one vapor precursor is fed over the first portion at a temperature above the oxidation temperature effective to form a second portion oxide material of the capacitor dielectric region over the first portion. The oxide material of the first portion and the oxide material of the second portion are common in chemical composition. A conductive second electrode layer is formed over the second portion oxide material of the capacitor dielectric region.
摘要:
The invention includes constructions having two dielectric layers over a conductively-doped semiconductive material. One of the dielectric layers contains aluminum oxide, and the other contains a metal oxide other than aluminum oxide (such metal oxide can be, for example, one or more of hafnium oxide, tantalum oxide, titanium oxide and zirconium oxide). The layer containing aluminum oxide is between the layer containing metal oxide and the conductively-doped semiconductive material. The invention includes capacitor devices having one electrode containing conductively-doped silicon and another electrode containing one or more metals and/or metal compounds. At least two dielectric layers are formed between the two capacitor electrodes, with one of the dielectric layers containing aluminum oxide and the other containing a metal oxide other than aluminum oxide. The invention also includes methods of forming capacitor constructions.
摘要:
Some embodiments include a method of forming a capacitor. An opening is formed through a silicon-containing mass to a base, and sidewalls of the opening are lined with protective material. A first capacitor electrode is formed within the opening and has sidewalls along the protective material. At least some of the silicon-containing mass is removed with an etch. The protective material protects the first capacitor electrode from being removed by the etch. A second capacitor electrode is formed along the sidewalls of the first capacitor electrode, and is spaced from the first capacitor electrode by capacitor dielectric. Some embodiments include multi-material structures having one or more of aluminum nitride, molybdenum nitride, niobium nitride, niobium oxide, silicon dioxide, tantalum nitride and tantalum oxide. Some embodiments include semiconductor constructions.
摘要:
Described are track fitting assemblies having a main body with at least one plunger aperture, at least one button aperture intersecting the at least one plunger aperture, and at least one disengagement recess, at least one shear plunger assembly having a plunger, a shear pin, a plunger-spring, and a button comprising a recess, and a track with a pair of lips having at least one opening. The shear plunger assembly is configured to have a disengaged position, wherein the button is extended from the main body and the shear pin is positioned within the main body, and an engaged position, wherein the button is positioned substantially flush with the main body, the recess of the button is positioned substantially flush with the disengagement recess of the main body, and the shear pin is extended from the main body and within the at least one opening.