Abstract:
A method includes defining an application operating cycle and a number of behavior matrices for a hybrid power train that powers the application, each behavior matrix corresponding to operations of the hybrid power train operating in a parallel configuration. The method includes determining a number of behavior sequences corresponding to the behavior matrices and applied sequentially to the application operating cycle, confirming a feasibility of each of the behavior sequences, determining a fitness value corresponding to each of the feasible behavior sequences, in response to the fitness value determining whether a convergence value indicates that a successful convergence has occurred, and in response to determining that a successful convergence has occurred, determining a calibration matrix in response to the behavior matrices and fitness values. The method includes providing the calibration matrix to a hybrid power train controller.
Abstract:
A method includes operating a hybrid power train having an internal combustion engine and an electrical torque provider. The method further includes determining a machine power demand and, in response to the machine power demand, determining a power division description. The method includes operating the internal combustion engine and the electrical torque provider in response to the power division description. The method further includes operating the internal combustion engine by starting the internal combustion engine in response to determining that a battery state-of-charge is below a predetermined threshold value.
Abstract:
Systems and apparatuses include one or more processing circuits including one or more memory devices coupled to one or more processors. The one or more memory devices are configured to store instructions thereon that, when executed by the one or more processors, cause the one or more processors to: receive a parameter regarding operation of a first vehicle of a first platoon; compare the parameter to a first predetermined threshold; responsive to determining that the parameter satisfies the first predetermined threshold, determine an exit parameter for the first vehicle; and cause the first vehicle to exit the first platoon based on the exit parameter.
Abstract:
A method includes receiving an indication regarding a deceleration event for a vehicle, remapping a response of a prime mover of the vehicle from following a first response curve to following a deceleration response curve in response to (i) the deceleration event and (ii) a speed of the vehicle being greater than a speed threshold, and activating an output of the prime mover to accelerate the vehicle at a relatively lesser amount of depression of an accelerator from a non-depressed state of the accelerator than prior to the deceleration event in response to the accelerator being engaged by an operator following the deceleration event.
Abstract:
A system for controlling an overtake maneuver of a control vehicle comprises a controller structured to determine an overtake velocity for the control vehicle traveling in a vehicle lane to overtake a front vehicle traveling ahead of the control vehicle in the vehicle lane. The controller determines an overtake time for the control vehicle to overtake the front vehicle based on the overtake velocity. The controller determines a direction of traffic in an overtake lane that is adjacent to the vehicle lane. If the direction of traffic in the overtake lane is the same as a direction of traffic in the vehicle lane, and the overtake velocity is less than or equal to an allowed velocity, the controller executes the overtake maneuver by one of adjusting a parameter of an engine and/or a transmission of the control vehicle or providing a command to an operator of the control vehicle.
Abstract:
Systems and apparatuses include one or more processing circuits comprising one or more memory devices coupled to one or more processors, the one or more memory devices configured to store instructions thereon that, when executed by the one or more processors, cause the one or more processors to: determine at least one reason for a deserter to exit a first platoon; determine a deserter position within the first platoon; communicate the deserter exit to the first platoon after determination of the at least one reason for the deserter to exit the first platoon based at least in part on the deserter position; adapt a behavior of the first platoon to allow the deserter to exit the first platoon; and reconfigure the remaining vehicles from the first platoon into a second platoon.
Abstract:
An air handling system for a fuel cell stack includes a pneumatic storage device disposed downstream from a compressor, a flow control valve system configured to operatively couple an inlet of the pneumatic storage device to an outlet of the compressor and configured to operatively couple an outlet of the pneumatic storage device to an inlet of the fuel cell stack, and a controller configured to, in response to a power demand being greater than a threshold, cause the flow control valve to open to increase a flow rate of air from the pneumatic storage device to the fuel cell stack.
Abstract:
A climate control system for vehicles includes an internal combustion engine that may be coupled to selectively power a first motor generator, and an air conditioning compressor that may be selectively powered by one or both of the first motor generator and a second motor generator, or by the internal combustion engine. The system may include a rechargeable battery, and a vehicle controller having a vehicle state circuit structured to determine a vehicle operating condition value and a state-of-charge value of the rechargeable battery, and a coupling determination circuit structured to provide an internal combustion engine-first motor generator coupling command in response to the vehicle operating condition value and the state-of-charge value. In response to the internal combustion engine-first motor generator coupling command being provided as coupled, the internal combustion engine may power the first motor generator.
Abstract:
Systems and apparatuses include a controller including a circuit structured to communicate with a platoon of vehicles, determine a platoon rank order, determine final separation distances between vehicles, affect operation of each vehicle to achieve the platoon rank order and final separation distances, monitor the platoon of vehicles to determine if a deserter is leaving the platoon of vehicles or if a critical change has occurred, determine an updated platoon rank order, and determine an updated final separation distances between vehicles.
Abstract:
A control system for a vehicle includes an engine controller operable to determine a requested engine torque in response to a cruise control set command and a cruise control offset value, determine an engine torque command in response to the requested engine torque and a torque limit, and control operation of an engine in response to the engine torque command. The control system also includes a platooning controller operable to determine and provide to the engine controller the cruise control set command, the cruise control offset value and the torque limit effective to cause the engine controller to control the engine to provide a desired following distance between the vehicle and a second vehicle.