Abstract:
A fiber-reinforced composite article useful for contaminant removal comprising at least one single layer of a fiber-reinforced composite having (a) at least one first polymer fiber-free region containing material adapted for removing contaminants, (b) at least one second polymer fiber-rich region containing fiber reinforcement material; and (c) at least one third polymer boundary region containing a portion of the first polymer fiber-free region and a portion of the second polymer fiber-rich region; a process for manufacturing the fiber-reinforced composite article; and a process for removing contaminants from a liquid fluid using the fiber-reinforced composite article.
Abstract:
A reaction system for forming a viscoelastic polyurethane foam includes an isocyanate component that has at least one isocyanate and an isocyanate-reactive component that is a mixture formed by adding at least a polyol component, an additive component, and a preformed aqueous polymer dispersion. The mixture includes, based on the total weight of the mixture, from 50.0 wt % to 99.8 wt % of a polyol component including at least one polyether polyol, from 0.1 wt % to 50.0 wt % of an additive component including at least one catalyst, and from 0.1 wt % to 6.0 wt % of a preformed aqueous polymer dispersion. The preformed aqueous polymer dispersion has a solids content from 10 wt % to 80 wt %, based on the total weight of the preformed aqueous polymer dispersion, and is one of an aqueous acid polymer dispersion or an aqueous acid modified polyolefin polymer dispersion in which the polyolefin is derived from at least one C2 to C20 alpha-olefin.
Abstract:
Polyisocyanurate or polyurethane-isocyanurate polymers are made by curing an aromatic polyisocyanate or a mixture of at least one aromatic polyisocyanate and at least one polyol having a hydroxyl equivalent weight of up to 200 in which the isocyanate index is at least 2.00, in the presence of at least one isocyanate trimerization catalyst, to form a polyisocyanurate or polyurethane-isocyanurate polymer having a glass transition temperature of at least 100° C., and then exposing the polyisocyanurate or polyurethane-isocyanurate polymer formed step a) to water under superatmospheric pressure at a temperature of at least 70° C.
Abstract:
The present disclosure is directed to a composition and articles containing the composition. The composition comprises a foam and a plurality of gel particles dispersed in the foam. The gel particles comprise an olefin block copolymer and an oil.
Abstract:
Solid, non-melting polyurethanes having a glass transition temperature of at least 40° C. and free isocyanate groups are self-bonding materials that are useful in a variety of adhesive and molding operations. Under conditions of heat and moisture, these polyurethanes will self-bond. The polyurethanes can be used as adhesive coatings, which are solid and non-tacky and thus can be transported and stored easily under ambient conditions. These polyurethane adhesives are especially useful in applications in which, due to the location and/or orientation of the substrates, liquid or melting materials cannot be applied easily or will run off the substrates.
Abstract:
Solid compositions made from or coated with a non-melting organic polymer having a main glass transition temperature of at least 65° C., few if any isocyanate groups and a wet aged glass transition temperature of up to 60° C. are self-bonding materials that are useful in a variety of adhesive and molding operations. Under conditions of heat and moisture, these compositions will self-bond. The compositions can be used as adhesive coatings, which are solid and non-tacky and thus can be transported and stored easily under ambient conditions. These compositions are especially useful in applications in which, due to the location and/or orientation of the substrates, liquid or melting materials cannot be applied easily or will run off the substrates.
Abstract:
The present disclosure is directed to a composition and articles containing the composition. The composition comprises a foam and a plurality of gel particles dispersed in the foam. The gel particles comprise an olefin block copolymer and an oil.
Abstract:
Recovery times and/or airflow of flexible polyurethane foam is increased by including certain tackifiers in the foam formulation. The tackifiers are formed into an emulsion that includes a polyether containing oxyethylene groups, a nonionic surfactant and certain fumed silica, carbon black or talc particles.
Abstract:
A reaction system for forming a polyurethane foam includes an isocyanate component that has at least one isocyanate and an isocyanate-reactive component that is a mixture formed by adding at least a polyol component, an additive component, and a preformed aqueous polymer dispersion. The mixture includes, based on the total weight of the mixture, from 50.0 wt % to 99.8 wt % of a polyol component including at least one polyether polyol, from 0.1 wt % to 50.0 wt % of an additive component including at least one catalyst, and from 0.1 wt % to 6.0 wt % of a preformed aqueous polymer dispersion. The preformed aqueous polymer dispersion has a solids content from 10 wt % to 80 wt %, based on the total weight of the preformed aqueous polymer dispersion, and is one of an aqueous acid polymer dispersion or an aqueous acid modified polyolefin polymer dispersion in which the polyolefin is derived from at least one C2 to C20 alpha-olefin.
Abstract:
A reaction system for forming a viscoelastic polyurethane foam includes an isocyanate component that has at least one isocyanate and an isocyanate-reactive component that is a mixture formed by adding at least a polyol component, an additive component, and a preformed aqueous polymer dispersion. The mixture includes, based on the total weight of the mixture, from 50.0 wt % to 99.8 wt % of a polyol component including at least one polyether polyol, from 0.1 wt % to 50.0 wt % of an additive component including at least one catalyst, and from 0.1 wt % to 6.0 wt % of a preformed aqueous polymer dispersion. The preformed aqueous polymer dispersion has a solids content from 10 wt % to 80 wt %, based on the total weight of the preformed aqueous polymer dispersion, and is one of an aqueous acid polymer dispersion or an aqueous acid modified polyolefin polymer dispersion in which the polyolefin is derived from at least one C2 to C20 alpha-olefin.