Abstract:
Nonvolatile memory elements and memory devices including the nonvolatile memory elements. A nonvolatile memory element may include a memory layer between two electrodes, and the memory layer may have a multi-layer structure. The memory layer may include a base layer and an ionic species exchange layer and may have a resistance change characteristic due to movement of ionic species between the base layer and the ionic species exchange layer. The ionic species exchange layer may have a multi-layer structure including at least two layers. The nonvolatile memory element may have a multi-bit memory characteristic due to the ionic species exchange layer having the multi-layer structure. The base layer may be an oxygen supplying layer, and the ionic species exchange layer may be an oxygen exchange layer.
Abstract:
Provided are an apparatus and method for efficiently and dynamically allocating a bandwidth on a Time Division Multiple Access-based Passive Optical Network (TDMA PON). The dynamic bandwidth allocation apparatus for uplink data transmission of a plurality of Optical Network Units (ONUs) including a plurality of class queues corresponding to Transmission Container (T-CONT) types, the plurality of ONUs connected to an Optical Line Terminal (OLT) on a Passive Optical Network (PON), includes: a class queue information storage unit storing information regarding a bandwidth allocation period and an allocatable bandwidth amount for each T-CONT type; an allocation check table unit checking the bandwidth allocation period for the T-CONT type received from the class queue information storage unit, and determining an allocatable bandwidth amount for the T-CONT type; and a bandwidth allocation unit allocating an uplink bandwidth to the T-CONT type with reference to the bandwidth allocation period and the allocatable bandwidth amount for the T-CONT type, and re-allocating to each ONU an uplink bandwidth remaining after allocating a total uplink bandwidths to all T-CONT types.
Abstract:
A resistive random access memory (RRAM) devices and resistive random access memory (RRAM) arrays are provided, the RRAM devices include a first electrode layer, a variable resistance material layer formed of an oxide of a metallic material having a plurality of oxidation states, an intermediate electrode layer on the variable resistance material layer and formed of a conductive material having a lower reactivity with oxygen than the metallic material, and a second electrode layer on the intermediate electrode layer. The RRAM arrays include at least one of the aforementioned RRAM devices.
Abstract:
Nonvolatile memory elements may include a first electrode, a second electrode, a first buffer layer, a second buffer layer and a memory layer. The memory layer may be between the first and second electrodes. The first butter layer may be between the memory layer and the first electrode. The second buffer layer may be between the memory layer and the second electrode. The memory layer may be a multi-layer structure including a first material layer and a second material layer. The first material layer may include a first metal oxide which is of the same group as, or a different group from, a second metal oxide included in the second material layer.
Abstract:
A gigabit passive optical network (GPON) system for fiber to the home (FTTH) service must provide a down-stream data rate of an optical band to provide IPTV service with hundreds of channels to subscribers, and must be able to provide an upstream data rate of an optical band using a currently available BM-IC chip. A currently available BM-IC chip for a GPON has 1.244 Gbps and 2.488 Gbps modes. Accordingly, an optical network terminal (ONT) for a GPON that is capable of providing a downstream transmission band of 10-Gbps and an upstream transmission band of 1.244 Gbps or 2.488 Gbps, and a method for processing an upstream frame in the terminal, are provided. The GPON ONT can provide 20 Mbps, high-definition IPTV service with 500 channels and can provide both upstream data rates of 1.244 Gbps and 2.488 Gbps according to a user's selection without using an additional device.
Abstract:
Provided is a resistance random access memory (RRAM) device and a method of manufacturing the same. A resistance random access memory (RRAM) device may include a lower electrode, a first oxide layer on the lower electrode and storing information using two resistance states, a current control layer made of a second oxide on the first oxide layer and an upper electrode on the current control layer.
Abstract:
A system for testing memory modules having a rotating-type board mounting portion with a plurality of mounting surfaces positioned at different planes and connected around an axis to form a rotatable structure, at least one circuit board mounted on each mounting surface, an input/output portion, a rotational motor coupled to a rotational shaft for rotating the rotatable structure, and a central controller electrically connected to the circuit boards.
Abstract:
An integrated circuit device includes a substrate including an active region, an interfacial layer including a lower insulating layer on the active region, the lower insulating layer doped with a chalcogen element having an atomic weight equal to or greater than 16, a gate insulation layer on the interfacial layer, and a gate electrode on the gate insulation layer.
Abstract:
A method of driving a nonvolatile memory device including applying a reset voltage to a unit memory cell, reading a reset current of the unit memory cell, confirming whether the reset current is within a first current range, if the reset current is not within the first current range, changing the reset voltage and applying a changed reset voltage or applying again the reset voltage to the unit memory cell after applying a set voltage to the unit memory cell, if the reset current is within the first current range, confirming whether a difference between the present reset current and an immediately previous set current is within a second current range, and, if the difference is not within the second current range, applying the reset voltage or applying again the reset voltage to the unit memory cell after applying a set voltage to the unit memory cell.
Abstract:
A non-volatile memory element includes: a memory layer disposed between a first electrode and a second electrode; and a buffer layer disposed between the memory layer and the first electrode. The memory layer includes a first material layer and a second material layer. The first material layer and the second material layer are configured to exchange ionic species to change a resistance state of the memory layer.