Abstract:
In some examples, a memory device may be configured to store data in either an original or an inverted state based at least in part on a state associated with one or more shorted bit cells. For instance, the memory device may be configured to identify a shorted bit cell within a memory array and to store the data in the memory array, such that a state of the data bit stored in the shorted bit cell matches the state associated with the shorted bit cell.
Abstract:
In some examples, a memory device may be configured to store data in either an original or an inverted state based at least in part on a state associated with one or more shorted bit cells. For instance, the memory device may be configured to identify a shorted bit cell within a memory array and to store the data in the memory array, such that a state of the data bit stored in the shorted bit cell matches the state associated with the shorted bit cell.
Abstract:
Three bridge circuits (101, 111, 121), each include magnetoresistive sensors coupled as a Wheatstone bridge (100) to sense a magnetic field (160) in three orthogonal directions (110, 120, 130) that are set with a single pinning material deposition and bulk wafer setting procedure. One of the three bridge circuits (121) includes a first magnetoresistive sensor (141) comprising a first sensing element (122) disposed on a pinned layer (126), the first sensing element (122) having first and second edges and first and second sides, and a first flux guide (132) disposed non-parallel to the first side of the substrate and having an end that is proximate to the first edge and on the first side of the first sensing element (122). An optional second flux guide (136) may be disposed non-parallel to the first side of the substrate and having an end that is proximate to the second edge and the second side of the first sensing element (122).
Abstract:
Circuitry and methods provide an increased tunnel barrier endurance (lifetime) previously shortened by dielectric breakdown by providing a charging pulses of opposite polarity in comparison with write pulses. The charging pulse of opposite polarity may comprise equal or different width and amplitude than that of the write pulse, may be applied with each write pulse or a series of write pulses, and may be applied prior to or subsequent to the write pulse. A register is also used to keep track of the read pulse polarity such that read pulses of alternating polarity can be used in reading operations.
Abstract:
A magnetic sensor includes a plurality of groups, each group comprising a plurality of magnetic tunnel junction (MTJ) devices having a plurality of conductors configured to couple the MTJ devices within one group in parallel and the groups in series enabling independent optimization of the material resistance area (RA) of the MTJ and setting total device resistance so that the total bridge resistance is not so high that Johnson noise becomes a signal limiting concern, and yet not so low that CMOS elements may diminish the read signal. Alternatively, the magnetic tunnel junction devices within each of at least two groups in series and the at least two groups in parallel resulting in the individual configuration of the electrical connection path and the magnetic reference direction of the reference layer, leading to independent optimization of both functions, and more freedom in device design and layout. The X and Y pitch of the sense elements are arranged such that the line segment that stabilizes, for example, the right side of one sense element; also stabilizes the left side of the adjacent sense element.
Abstract:
A semiconductor process integrates three bridge circuits, each include magnetoresistive sensors coupled as a Wheatstone bridge on a single chip to sense a magnetic field in three orthogonal directions. The process includes various deposition and etch steps forming the magnetoresistive sensors and a plurality of flux guides on one of the three bridge circuits for transferring a “Z” axis magnetic field onto sensors orientated in the XY plane.
Abstract:
A magnitude and direction of at least one of a reset current and a second stabilization current (that produces a reset field and a second stabilization field, respectively) is determined that, when applied to an array of magnetic sense elements, minimizes the total required stabilization field and reset field during the operation of the magnetic sensor and the measurement of the external field. Therefore, the low field sensor operates optimally (with the highest sensitivity and the lowest power consumption) around the fixed external field operating point. The fixed external field is created by other components in the sensor device housing (such as speaker magnets) which have a high but static field with respect to the low (earth's) magnetic field that describes orientation information.
Abstract:
A magnetoresistive element (e.g., a spin-torque magnetoresistive memory element) includes a fixed magnetic layer, a free magnetic layer, having a high-iron alloy interface region located along a surface of the free magnetic layer, wherein the high-iron alloy interface region has at least 50% iron by atomic composition, and a first dielectric, disposed between the fixed magnetic layer and the free magnetic layer. The magnetoresistive element further includes a second dielectric, having a first surface that is in contact with the surface of the free magnetic layer, and an electrode, disposed between the second dielectric and a conductor. The electrode includes: (i) a non-ferromagnetic portion having a surface that is in contact with a second surface of the second dielectric, and (ii) a second portion having at least one ferromagnetic material disposed between the non-ferromagnetic portion of the electrode and the conductor.
Abstract:
A magnetoresistive memory device that stores data in the synthetic antiferromagnet (SAF) included in each spin-torque memory cell provides for more robust data storage. In normal operation, the memory cells use the free portion of the memory cell for data storage. Techniques for storing data in the reference portions of memory cells are presented, where an unbalanced SAF that includes ferromagnetic layers having different magnetic moments is used to lower the switching barrier for the SAF and allow for writing data values to the SAF using lower currents and magnetic fields than would be required for a balanced SAF.
Abstract:
A magnetic field sensor that includes a differential bridge in which each path of the bridge includes a first type of magnetic field sensing device and a second type of magnetic field sensing device. The first and second types of magnetic field sensing devices differ in the magnetic moment imbalance present in the synthetic antiferromagnets (SAFs) included in their reference layers such that that different types of devices produce a different response to perpendicular magnetic fields, but the same response to in-plane magnetic fields. Such different magnetic moment imbalances in the SAFs of magnetic field sensing devices included in a bridge allow for accurate sensing of perpendicular magnetic fields in a differential manner that also cancels out interference from in-plane fields. Techniques for producing such magnetic field sensing devices on an integrated circuit are also presented. Moreover, the free layers within the magnetic field sensing devices can be adjusted in terms of their sensitivity range and level of sensitivity by manipulating the kink filed (Hk) for those free layers.