摘要:
One embodiment of the present invention provides a semiconductor light-emitting device, which comprises: an upper cladding layer; a lower cladding layer; an active layer between the upper and lower cladding layers; an upper ohmic-contact layer forming a conductive path to the upper cladding layer; and a lower ohmic-contact layer forming a conductive path the lower cladding layer. The lower ohmic-contact layer has a shape substantially different from the shape of the upper ohmic-contact layer, thereby diverting a carrier flow away from a portion of the active layer which is substantially below the upper ohmic-contact layer when a voltage is applied to the upper and lower ohmic-contact layers.
摘要:
One embodiment of the present invention provides a method for fabricating a high-quality metal substrate. During operation, the method involves cleaning a polished single-crystal substrate. A metal structure of a predetermined thickness is then formed on a polished surface of the single-crystal substrate. The method further involves removing the single-crystal substrate from the metal structure without damaging the metal structure to obtain the high-quality metal substrate, wherein one surface of the metal substrate is a high-quality metal surface which preserves the smoothness and flatness of the polished surface of the single-crystal substrate.
摘要:
A semiconductor light-emitting device includes a multilayer semiconductor structure on a conductive substrate. The multilayer semiconductor structure includes a first doped semiconductor layer situated above the conductive substrate, a second doped semiconductor layer situated above the first doped semiconductor layer, and/or an MQW active layer situated between the first and second doped semiconductor layers. The device also includes a reflective ohmic-contact metal layer between the first doped semiconductor layer and the conductive substrate, which includes Ag, and at least one of: Ni, Ru, Rh, Pd, Au, Os, Ir, and Pt; plus at least one of: Zn, Mg Be, and Cd; and a number of: W, Cu, Fe, Ti, Ta, and Cr. The device further includes a bonding layer between the reflective ohmic-contact metal layer and the conductive substrate, a first electrode coupled to the conductive substrate, and a second electrode coupled to the second doped semiconductor layer.
摘要:
A light-emitting device includes a substrate, a first doped semiconductor layer situated above the substrate, a second doped semiconductor layer situated above the first doped layer, and a multi-quantum-well (MQW) active layer situated between the first and the second doped layers. The device also includes a first electrode coupled to the first doped layer and a first passivation layer situated between the first electrode and the first doped layer in areas other than an ohmic-contact area. The first passivation layer substantially insulates the first electrode from edges of the first doped layer, thereby reducing surface recombination. The device further includes a second electrode coupled to the second doped layer and a second passivation layer which substantially covers the sidewalls of the first and second doped layers, the MQW active layer, and the horizontal surface of the second doped layer.
摘要:
One embodiment of the present invention provides a method for fabricating light-emitting diodes (LEDs). The method includes fabricating an InGaAlN-based multilayer LED structure on a conductive substrate. The method further includes etching grooves of a predetermined pattern through the active region of the multilayer LED structure. The grooves separate a light-emitting region from non-light-emitting regions. In addition, the method includes depositing electrode material on the light-emitting and non-light-emitting regions, thereby creating an electrode. Furthermore, the method includes depositing a passivation layer covering the light-emitting and non-light-emitting regions. Moreover, the method includes removing the passivation layer on the electrode to allow the non-light-emitting regions which are covered with the electrode material and the passivation layer to be higher than the light-emitting region and the electrode, thereby protecting the light-emitting region from contact with test equipment.
摘要:
One embodiment of the present invention provides a method for fabricating a highly reflective electrode in a light-emitting device. During the fabrication process, a multilayer semiconductor structure is fabricated on a growth substrate, wherein the multilayer semiconductor structure includes a first doped semiconductor layer, a second doped semiconductor layer, and/or a multi-quantum-wells (MQW) active layer. The method further includes the followings operations: forming a contact-assist metal layer on the first doped semiconductor layer, annealing the multilayer structure to activate the first doped semiconductor layer, removing the contact-assist metal layer, forming a reflective ohmic-contact metal layer on the first doped semiconductor layer, forming a bonding layer coupled to the reflective ohmic-contact metal layer, bonding the multilayer structure to a conductive substrate, removing the growth substrate, forming a first electrode coupled to the conductive substrate, and forming a second electrode on the second doped semiconductor layer.
摘要:
A light-emitting device includes a conductive substrate (320), a multilayer semiconductor structure situated above the conductive substrate including a n-type doped semiconductor layer (308), a p-type doped semiconductor layer (312) situated above the n-type doped semiconductor layer (308), and a MQW active layer (310) situated between the p-type and n-type doped semiconductor layer (308,312). The multilayer semiconductor structure is divided by grooves (300) to form a plurality of independent light-emitting mesas (304,306). At least one light-emitting mesa (304,306) comprises a color conversion layer (324,326).
摘要:
One embodiment of the present invention provides a method for fabricating a high-power light-emitting diode (LED). The method includes etching grooves on a growth substrate, thereby forming mesas on the growth substrate. The method further includes fabricating indium gallium aluminum nitride (InGaAlN)-based LED multilayer structures on the mesas on the growth substrate, wherein a respective mesa supports a separate LED structure. In addition, the method includes bonding the multilayer structures to a conductive substrate. The method also includes removing the growth substrate. Furthermore, the method includes depositing a passivation layer and an electrode layer above the InGaAlN multilayer structures, wherein the passivation layer covers the sidewalls and bottom of the grooves. Moreover, the method includes creating conductive paths which couple a predetermined number of adjacent individual LEDs, thereby allowing the LEDs to share a common power supply and be powered simultaneously to form a high-power LED array.
摘要:
A method for fabricating a semiconductor light-emitting device includes fabricating a multilayer semiconductor structure on a first substrate, wherein the multilayer semiconductor structure comprises a first doped semiconductor layer, an MQW active layer, a second doped semiconductor layer, and a first passivation layer. The method further involves patterning and etching part of the first passivation layer to expose the first doped semiconductor layer. A first electrode is then formed, which is coupled to the first doped semiconductor layer. Next, the multilayer structure is bonded to a second substrate; and the first substrate is removed. A second electrode is formed, which is coupled to the second doped semiconductor layer. Further, a second passivation layer is formed, which substantially covers the sidewalls of multilayer structure and part of the surface of the second doped semiconductor layer which is not covered by the second electrode.
摘要:
One embodiment of the present invention provides a method for fabricating a highly reflective electrode in a light-emitting device. During the fabrication process, a multilayer semiconductor structure is fabricated on a growth substrate, wherein the multilayer semiconductor structure includes a first doped semiconductor layer, a second doped semiconductor layer, and/or a multi-quantum-wells (MQW) active layer. The method further includes the followings operations: forming a contact-assist metal layer on the first doped semiconductor layer, annealing the multilayer structure to activate the first doped semiconductor layer, removing the contact-assist metal layer, forming a reflective ohmic-contact metal layer on the first doped semiconductor layer, forming a bonding layer coupled to the reflective ohmic-contact metal layer, bonding the multilayer structure to a conductive substrate, removing the growth substrate, forming a first electrode coupled to the conductive substrate, and forming a second electrode on the second doped semiconductor layer.