摘要:
There is provided an InGaAlN light-emitting device and a manufacturing method thereof. The light emitting device includes a conductive substrate having a main surface and a back surface, a metal bonding layer formed on the main surface of the substrate, a light reflecting layer formed on the bonding layer, a semiconductor multilayer structure including at least a p-type and an n-type InGaAlN layer disposed on the reflecting layer, the p-type InGaAlN layer directly contacting the reflecting layer, and ohmic electrodes disposed on said n-type InGaAlN layer and on the back surface of the conductive substrate, respectively.
摘要:
One embodiment of the present invention provides a gallium nitride (GaN)-based semiconductor light-emitting device (LED) which includes an n-type GaN-based semiconductor layer (n-type layer); an active layer; and a p-type GaN-based semiconductor layer (p-type layer). The n-type layer is epitaxially grown by using ammonia gas (NH3) as the nitrogen source prior to growing the active layer and the p-type layer. The flow rate ratio between group V and group III elements is gradually reduced from an initial value to a final value. The GaN-based LED exhibits a reverse breakdown voltage equal to or greater than 60 volts.
摘要:
There is provided a method of fabricating InGaAlN film on a silicon substrate, which comprises the following steps of forming a pattern structured having grooves and mesas on the silicon substrate, and depositing InGaAlN film on the surface of substrate, wherein the depth of the grooves is more than 6 nm, and the InGaAlN film formed on the mesas of both sides of the grooves are disconnected in the horizontal direction. The method may grow high quality, no crack and large area of InGaAlN film by simply treating the substrate. At the same time, there is also provided a method of fabricating InGaAlN light-emitting device by using the silicon substrate.
摘要:
One embodiment of the present invention provides a semiconductor light-emitting device which includes: (1) a silicon (Si) substrate; (2) a silver (Ag) transition layer which is formed on a surface of the Si substrate, wherein the Ag transition layer covers the Si substrate surface; and (3) an InGaAlN, ZnMgCdO, or ZnBeCdO-based semiconductor light-emitting structure which is fabricated on the Ag-coated Si substrate. Note that the Ag transition layer prevents the Si substrate surface from forming an amorphous overcoat with reactant gases used for growing the semiconductor light-emitting structure.
摘要:
One embodiment of the present invention provides a semiconductor light-emitting device which includes a multi-layer structure. The multilayer structure comprises a first doped layer, an active layer, and a second doped layer. The semiconductor light-emitting device further includes a first Ohmic-contact layer configured to form a conductive path to the first doped layer, a second Ohmic-contact layer configured to form a conductive path to the second doped layer, and a support substrate comprising not less than 15% chromium (Cr) measured in weight percentage.
摘要:
A semiconductor light-emitting device, the device includes a substrate, a semiconductor stacked layer, a lead electrode and a lead, wherein the semiconductor stacked layer at least includes a N-type layer and a P-type layer, at least one of the N-type layer and the P-type layer has an opening, the opening is just beneath the lead; or includes a conductive substrate having a main surface and a back surface, an adhesive metal layer, a reflective/ohmic metal layer, a semiconductor stacked layer, a lead electrode and a lead sequentially deposited on the main surface of the substrate, the reflective/ohmic metal layer has an opening, the opening is just beneath the lead.
摘要:
The method for manufacturing the indium gallium aluminium nitride (InGaAlN) thin film on silicon substrate, which comprises the following steps: introducing magnesium metal for processing online region mask film, that is, or forming one magnesium mask film layer or metal transition layer; then forming one metal transition layer or magnesium mask layer, finally forming one layer of indium gallium aluminium nitride semiconductor layer; or firstly forming one layer of metal transition layer on silicon substrate and then forming the first indium gallium aluminium nitride semiconductor layer, magnesium mask layer and second indium gallium aluminium nitride semiconductor layer in this order. This invention can reduce the dislocation density of indium gallium aluminium nitride materials and improve crystal quality.
摘要:
There is provided an InGaAlN light-emitting device and a manufacturing method thereof. The light emitting device includes a conductive substrate having a main surface and a back surface, a metal bonding layer formed on the main surface of the substrate, a light reflecting layer formed on the bonding layer, a semiconductor multilayer structure including at least a p-type and an n-type InGaAlN layer disposed on the reflecting layer, the p-type InGaAlN layer directly contacting the reflecting layer, and ohmic electrodes disposed on said n-type InGaAlN layer and on the back surface of the conductive substrate, respectively.
摘要:
One embodiment of the present invention provides a method for fabricating a group III-V p-type nitride structure. The method comprises growing a first layer of p-type group III-V material with a first acceptor density in a first growing environment. The method further comprises growing a second layer of p-type group III-V material, which is thicker than the first layer and which has a second acceptor density, on top of the first layer in a second growing environment. In addition, the method comprises growing a third layer of p-type group III-V material, which is thinner than the second layer and which has a third acceptor density, on top of the second layer in a third growing environment.
摘要:
A method for fabricating a semiconductor light-emitting device based on a strain adjustable multilayer semiconductor film is disclosed. The method includes epitaxially growing a multilayer semiconductor film on a growth substrate, wherein the multilayer semiconductor film comprises a first doped semiconductor layer, a second doped semiconductor layer, and a multi-quantum-wells (MQW) active layer; forming an ohmic-contact metal layer on the first doped semiconductor layer; depositing a metal substrate on top of the ohmic-contact metal layer, wherein the density and/or material composition of the metal substrate is adjustable along the vertical direction, thereby causing the strain in the multilayer semiconductor film to be adjustable; etching off the growth substrate; and forming an ohmic-electrode coupled to the second doped semiconductor layer.