摘要:
A storage cell has a number of projections of a semiconductor substrate arranged in rows and columns, neighboring rows of the projections being translation-symmetrical in relation to a y-axis which extends parallel to the columns. Each of the projections has at least one first source/drain region of a selection transistor and one channel region arranged below the first source/drain region, which is surrounded by a gate electrode annularly. A storage capacitor is connected between the first source/drain region and a bit line. The bit line as well as the storage capacitor are arranged essentially above the semiconductor substrate. Second source/drain regions of selection transistors are buried in the semiconductor substrate and connected with each other. Word lines can be formed self-justified in the form of adjacent gate electrodes. The projections can be created by etching with only one mask. The storage cell can be produced with an area of 4F.sup.2, F being the minimal structural size that can be produced in the respective technology.
摘要:
Embodiments of the invention relate generally to a method for manufacturing an integrated circuit, a method for manufacturing a cell arrangement, an integrated circuit, a cell arrangement, and a memory module. In an embodiment of the invention, a method for manufacturing an integrated circuit having a cell arrangement is provided, including forming at least one semiconductor fin structure having an area for a plurality of fin field effect transistors, wherein the area of each fin field effect transistor includes a first region having a first fin structure width, a second region having a second fin structure width, wherein the second fin structure width is smaller than the first fin structure width. Furthermore, a plurality of charge storage regions are formed on or above the second regions of the semiconductor fin structure.
摘要:
An integrated circuit arrangement and fabrication method is presented. The integrated circuit arrangement contains a semiconductor and a metal electrode. The contact area between a semiconductor and the electrode is increased without increasing the lateral dimensions using partial regions of the semiconductor and/or of the electrode that extend through a transition layer between the semiconductor and electrode.
摘要:
A semiconductor memory having a multitude of memory cells (21-1), the semiconductor memory having a substrate (1), at least one wordline (5-1), a first (15-1) and a second line (15-2; 16-1), wherein each of the multitude of memory cells (21-1) comprises a first doping region (6) disposed in the substrate (1), a second doping region (7) disposed in the substrate (1), a channel region (22) disposed in the substrate (1) between the first doping region (6) and the second doping region (7), a charge-trapping layer stack (2) disposed on the substrate (1), on the channel region (22), on a portion of the first doping region (6) and on a portion of the second doping region (7). Each memory cell (21-1) further comprises a conductive layer (3) disposed on the charge-trapping layer stack (2), wherein the conductive layer (3) is electrically floating. A dielectric layer (4) is disposed on a top surface of the conductive layer (3) and on sidewalls (23) of the conductive layer (3). The first line (15-1) extends along a first direction and is coupled to the first doping region (6), and the second line (15-2; 16-1) extends along the first direction and is coupled to the second doping region (7). The at least one wordline (5-1) extends along a second direction and is disposed on the dielectric layer (4).
摘要:
The memory cell array comprises a plurality of parallel fins provided as bitlines arranged at a distance of down to about 40 nm from one another and having a lateral dimension of less than about 30 nm, subdivided into pairs of adjacent first and second fins. A charge-trapping memory layer sequence is arranged on the fins. Wordlines are arranged across the fins, and source/drain regions are located in the fins between the wordlines and at the ends of the fins. There are preferably self-aligned contact areas of the source/drain regions at the ends of the fins, each contact area being common to the fins of one of said pairs. Select transistors and select lines are provided for the first and second fins individually to enable a separate addressing of the memory cells.
摘要:
Substrate having a first partial substrate with a carrier layer and a second partial substrate, which is bonded to the first partial substrate. The second partial substrate has an insulator layer, which is applied on the carrier layer and has at least two regions each having a different thickness, thereby forming a stepped surface of the insulator layer, and a semiconductor layer, which is applied to the stepped surface of the insulator layer and is formed at least partially epitaxially, wherein the semiconductor layer has a planar surface which is opposite to the stepped surface of the insulator layer. Transistors are formed on the semiconductor layer.
摘要:
A DRAM cell configuration includes a vertical MOS transistor per memory cell. First source/drain regions of the transistor each belong to two adjacent transistors and adjoin a bit line. Second source/drain regions of the transistor are connected to a storage node. A gate electrode of the transistor has exactly two sides adjoined by a gate oxide. The DRAM cell configuration can be produced by using three masks with a memory cell area of 4 F2. F is a minimum structure size which can be produced by using the respective technology.
摘要:
The invention relates to a transistor that is provided with a first source/drain area (S/D1), a channel area (KA) adjacent thereto, a second source/drain area (S/D 2) adjacent thereto, a gate dielectric and a gate electrode. A first capacitor electrode (SP) of the capacitor is connected to the first source/drain area (S/D1). An insulating structure entirely surrounds an insulating area of the circuit arrangement. At least the first capacitor electrode (SP) and the first source/drain area (S/D1) are arranged in the insulating area. The second source/drain area (S/D2) and the second capacitor electrode of the capacitor are arranged outside the insulating area. The insulating structure prevents the first capacitor electrode (SP) from loosing charge through leaking currents between charging and discharging of the capacitor. A tunnel barrier (T) which is arranged in the channel area (KA) is part of the insulating structure. A capacitor dielectric (KD) that separates the first capacitor electrode (SP) from the second capacitor electrode is part of the insulating structure.
摘要翻译:本发明涉及一种具有第一源极/漏极区域(S / D 1),与其相邻的沟道区域(KA),与其相邻的第二源极/漏极区域(S / D 2),栅极电介质 和栅电极。 电容器的第一电容器电极(SP)连接到第一源极/漏极区域(S / D 1)。 绝缘结构完全围绕电路装置的绝缘区域。 至少第一电容器电极(SP)和第一源极/漏极区域(S / D 1)布置在绝缘区域中。 电容器的第二源极/漏极区域(S / D 2)和第二电容器电极布置在绝缘区域的外部。 绝缘结构防止第一电容器电极(SP)通过电容器的充电和放电之间的泄漏电流而失去电荷。 布置在通道区域(KA)中的隧道势垒(T)是绝缘结构的一部分。 将第一电容器电极(SP)与第二电容器电极分离的电容器电介质(KD)是绝缘结构的一部分。
摘要:
A semiconductor memory having a multitude of memory cells (21-1), the semiconductor memory having a substrate (1), at least one wordline (5-1), a first (15-1) and a second line (15-2; 16-1), wherein each of the multitude of memory cells (21-1) comprises a first doping region (6) disposed in the substrate (1), a second doping region (7) disposed in the substrate (1), a channel region (22) disposed in the substrate (1) between the first doping region (6) and the second doping region (7), a charge-trapping layer stack (2) disposed on the substrate (1), on the channel region (22), on a portion of the first doping region (6) and on a portion of the second doping region (7). Each memory cell (21-1) further comprises a conductive layer (3) disposed on the charge-trapping layer stack (2), wherein the conductive layer (3) is electrically floating. A dielectric layer (4) is disposed on a top surface of the conductive layer (3) and on sidewalls (23) of the conductive layer (3). The first line (15-1) extends along a first direction and is coupled to the first doping region (6), and the second line (15-2; 16-1) extends along the first direction and is coupled to the second doping region (7). The at least one wordline (5-1) extends along a second direction and is disposed on the dielectric layer (4).
摘要:
An integrated circuit arrangement and fabrication method is presented. The integrated circuit arrangement contains a semiconductor and a metal electrode. The contact area between a semiconductor and the electrode is increased without increasing the lateral dimensions using partial regions of the semiconductor and/or of the electrode that extend through a transition layer between the semiconductor and electrode.