Abstract:
An integrated circuit including a gate electrode is disclosed. One embodiment provides a transistor including a first source/drain electrode and a second source/drain electrode. A channel is arranged between the first and the second source/drain electrode in a semiconductor substrate. A gate electrode is arranged adjacent the channel layer and is electrically insulated from the channel layer. A semiconductor substrate electrode is provided on a rear side. The gate electrode encloses the channel layer at least two opposite sides.
Abstract:
A double gate MOSFET transistor and a method for fabricating it are described. In this case, a semiconductor layer structure of a transistor channel to be formed is embedded in a spacer material and contact-connected by source and drain regions which are filled into depressions that are etched on opposite sides of the semiconductor layer structure. Afterwards, the spacer material is etched out selectively and replaced by the electrically conductive gate electrode material.
Abstract:
A memory cell configuration has word lines and bit lines that extend transversely with respect thereto. Memory elements with a giant magnetoresistive effect are respectively connected between one of the word lines and one of the bit lines. The bit lines are each connected to a sense amplifier by means of which the potential on the respective bit line can be regulated to a reference potential and at which an output signal can be picked off. The memory cell configuration can be used both as an MRAM and as an associative memory.
Abstract:
A memory cell contains a memory transistor and a transfer transistor. A gate electrode of the transfer transistor and a control gate electrode of the memory transistor are connected to a word line. The memory transistor has a floating gate electrode that is isolated from a channel region of the memory transistor by a first dielectric layer and is connected to a first source/drain region of the transfer transistor. The control gate electrode is isolated from the floating gate electrode by a second dielectric layer. A first source/drain region of the memory transistor is connected to a bit line. The memory and transfer transistors are preferably of different conductivity types. During the writing of information, the transfer transistor is in the on-state and the memory transistor is in the off-state. During the reading-out of information, the transfer transistor is in the off-state and the memory transistor is in the on-state.
Abstract:
A spacer is used as a mask in an etching step during which a layer structure is produced for a channel layer and for a first source/drain region. After the layer structure has been produced, the first source/drain region and a second source/drain region can be produced by implantation. The second source/drain region is self-aligned on two mutually opposite flanks of the layer structure. A gate electrode can be produced in the form of a spacer on the two flanks. In order to avoid a capacitance formed by a first contact of the gate electrode and the first source/drain region, a part of the first source/drain region may be removed. If the layer structure is produced along edges of an inner area, then a third contact of the second source/drain region may be produced inside the inner area in order to reduce the surface area of the transistor.
Abstract:
A DRAM cell is disposed in an electrically isolated region of a semiconductor body. The cell includes a storage capacitor disposed in a trench. The capacitor is disposed entirely within the isolated region of the semiconductor body. The cell includes a transistor disposed in the isolated region. The transistor has a pair of gates. A word line is provided for addressing the cell. The word line has an electrical contact region to the transistor. The word line contact region is disposed entirely within the isolated region of the semiconductor body. The transistor has an active area. The active area has source, drain, and channel regions. The active area is disposed entirely within the isolated region of the semiconductor body. A bit line is provided for the cell. The bit line is in electrical contact with the gates of the transistor at a pair of bit line contact regions. Both such bit line contact regions are disposed entirely within the isolated region of the cell. With such an arrangement a DRAM cell is provided having a relatively occupies a relatively small amount of surface area of the semiconductor body.
Abstract:
A memory cell contains at least one transistor and one capacitor connected to an upper bit line. The capacitor contains a first capacitor electrode arranged above the transistor, and is connected to the transistor. The upper bit line can be created in self-adjusted fashion on the basis of trenches which are of different widths, which extend transversely to one another, and which are arranged between the first capacitor electrodes. At least a part of each first capacitor electrode can be created from a layer which is structured by the trenches. Trenches can be narrowed by spacers.
Abstract:
An electrically writable and erasable read-only memory cell arrangement fabricated in a semiconductor substrate, preferably of monocrystalline silicon, or in a silicon layer of an SOI substrate. A cell array with memory cells is provided on a main surface of the semiconductor substrate. Each memory cell comprises an MOS transistor, vertical to the main surface and comprising, in addition to the source/drain region and a channel region arranged in-between, a first dielectric, a floating gate, a second dielectric and a control gate. A plurality of essentially parallel strip-shaped trenches are provided in the cell array. The vertical MOS transistors are arranged on the flanks of the trenches. The memory cells are in each case arranged on opposite flanks of the trenches.
Abstract:
A read-only memory cell array has a plurality of individual memory cells which each have a MOS transistor and which are arranged in rows running in parallel. In this context, adjacent rows run alternately at the bottom of the longitudinal trenches (6) and between adjacent longitudinal trenches (6) respectively and are insulated with respect to one another. The read-only memory cell array can be manufactured by self-aligning process steps with an area of 2 F.sup.2 (F: minimum structure size) being required per memory cell.
Abstract:
Each memory cell of an array has a single-electron transistor and a single-electron memory element. The single-electron transistor is driven by a charge stored in the memory element. When a read voltage is applied, a current flows through the single-electron transistor which is dependent on the stored charge, but the stored charge in not changed. When a write voltage is applied, the magnitude of which is greater than the read voltage, then the stored charge is changed. The memory cells of the array are each connected between first lines and transverse second lines of a memory cell configuration.