Abstract:
Examples include generating a signal using a modulatable source. The signal may be propagated using a multi-mode fiber to receive the signal from the modulatable source. The fiber has a diameter d and a far-field divergence angle associated with the propagated signal that corresponds to a product of the diameter (d) and the far-field divergence angle. The product may be substantially between 1 micron radian and 4 micron radian. In some examples, the propagated signal may be received at a receiver from the multi-mode fiber.
Abstract:
An apparatus includes a first and second VCSEL, each with an integrated lens. The VCSELs emit a first light beam having first optical modes at first wavelengths and a second light beam having second optical modes at second wavelengths. The apparatus also has an optical block with a first and second surface, a mirror coupled to the second surface, and a wavelength-selective filter coupled to the first surface. The first integrated lens mode matches the first beam to the optical block, and the second integrated lens mode matches the second beam to the optical block such that the first beam and second beam each have substantially a beam waist with a beam waist dimension at the first and second input region, respectively. An exit beam that includes light from the first beam and the second beam is output from the second surface of the optical block.
Abstract:
In the examples provided herein, a data center transmission system includes a VCSEL (vertical-cavity surface-emitting laser) that lases in a single spatial mode with a side mode suppression ratio of at least 25 dB, where the VCSEL is formed on a substrate and lases at a wavelength transparent to the substrate, and further where an output of the VCSEL exits through the substrate. Also, the VCSEL is directly modulated. The system further includes an optical fiber having a first end to receive the output of the VCSEL for propagation along the optical fiber. The optical fiber supports a single spatial mode without supporting higher order spatial modes over a range of wavelengths between 1260 nm and 1360 nm. The system also includes a receiver to receive the directly modulated output of the VCSEL after propagation through the optical fiber.
Abstract:
A system for interfacing a ferrule with a socket includes a socket, a cover to optically couple a ferrule to the socket, and a gasket interposed between the cover and the ferrule. The gasket applies a compression force against the ferrule to secure the ferrule to the socket.
Abstract:
Examples herein relate to a Wavelength Division Multiplexing (WDM) optical module configured for M optical fibers, N WDM wavelengths and M×N optical signals. The module comprises an active silicon interposer, the interposer comprises a (M/2)×N array of photodetectors established on a front side of the interposer and N chips for the N WDM wavelengths. Each chip comprises M lenses for M optical signals, the M lenses established on a back side of a GaAs substrate, the M lenses comprising a first group of M/2 lenses to focus M/2 optical input signals onto M/2 photodetectors of the (M/2)×N array, and a second group of M/2 lenses to collimate M/2 optical output signals, and M/2 Vertical Cavity Surface Emitting Lasers (VCSELs) established on a front side of the GaAs substrate to generate the M/2 optical output signals.
Abstract:
In the examples provided herein, an apparatus has an optically transparent block having a filter surface. The apparatus also has two or more filters, where each of the filters has thin films fabricated on an optically transparent substrate, and further wherein the thin films of the filters are coupled to the filter surface. Additionally, the apparatus has an optically transparent overmold material encasing the two or more filters, where the overmold material fills a volume between and above neighboring ones of the two or more filters.
Abstract:
Vertical-cavity surface-emitting lasers (“VCSELs”) and VCSEL arrays are disclosed. In one aspect, a surface-emitting laser includes a grating layer having a sub-wavelength grating to form a resonant cavity with a reflective layer for a wavelength of light to be emitted from a light-emitting layer and an aperture layer disposed within the resonant cavity. The VCSEL includes a charge carrier transport layer disposed between the grating layer and the light-emitting layer. The transport layer has a gap adjacent to the sub-wavelength grating and a spacer region between the gap and the light-emitting layer. The spacer region and gap are dimensioned to be substantially transparent to the wavelength. The aperture layer directs charge carriers to enter a region of the light-emitting layer adjacent to an aperture in the aperture layer and the aperture confines optical modes to be emitted from the light-emitting layer.
Abstract:
A high contrast grating optoelectronic apparatus includes an optoelectronic device at a front surface of a substrate. The optoelectronic device is to one or both of emit light and detect light through a back surface of the substrate opposite the front surface. A high contrast grating (HCG) lens is adjacent to and spaced apart from the back surface of the substrate by a spacer. The spacer includes one or both of a wafer-bonded substrate and a cavity. The HCG lens is to focus the light.
Abstract:
An example device includes a first semiconductor component comprising at least two lasers to emit light at a first wavelength; a second semiconductor component comprising at least two lasers to emit light at a second wavelength, the first wavelength being different from the second wavelength; and an optical multiplexer to receive light from two lasers at the first wavelength and light from two lasers at the second wavelength. The optical multiplexer component includes a first output interface to couple light from one laser at the first wavelength and light from one laser at the second wavelength to a first optical fiber, and a second output interface to couple light from one laser at the first wavelength and light from one laser at the second wavelength beams to a second optical fiber.
Abstract:
A device includes a first element and a second element. The first element includes a plurality of mirrors formed as concave features on the first element. The second element is to support a plurality of filters. The first element is coupleable to the second element to align the plurality of mirrors relative to the plurality of filters to operate as a multiplexer or de-multiplexer.