Abstract:
A nonlinear memristor device with a three-layer selector includes a memristor in electrical series with a three-layer selector. The memristor comprises at least one electrically conducting layer and at least one electrically insulating layer. The three-layer selector comprises a three-layer structure selected from the group consisting of XN—XO—XN; XN—YO—ZN: XN—YO—XN; XO—XN—XO; XO—YN—XO; XO—YN—ZO; XO—YO—XO; XO—YO—ZO; XN—YN—ZN; and XN—YN—XN, X represents a compound-forming metal different from Y and Z.
Abstract:
A switching resistance memory device with an interfacial channel includes a stack made of a layer of a first material and a layer of a second material. The layers form an interface, with the interface comprising the interfacial channel along which charged species can travel. A first electrode contacts a first edge of the stack, and a second electrode contacts a second edge of the stack.
Abstract:
A memristor structure may be provided that includes a first electrode, a second electrode, and a buffer layer disposed on the first electrode. The memristor structure may include a switching layer interposed between the second electrode and the buffer layer to form, when a voltage is applied, a filament or path that extends from the second electrode to the buffer layer and to form a Schottky-like contact or a heterojunction between the filament and the buffer layer.
Abstract:
A memristive dot-product system for vector processing is described. The memristive dot-product system includes a crossbar array having a number of memory elements. Each memory element includes a memristor. Each memory element includes a transistor. The system also includes a vector input register. The system also includes a vector output register.
Abstract:
Provided in one example is a nonvolatile memory cross-bar array. The array includes: a number of junctions formed by a number of row lines intersecting a number of column lines; a first set of controls at a first set of the junctions coupling between a first set of the row lines and a first set of the column lines; a second set of controls at a second set of the junctions coupling between a second set of the row lines and a second set of the column lines; and a current collection line to collect currents from the controls of the first set and the second set through their respective column lines and output a result current corresponding to a sum of a first dot product and a second dot product.
Abstract:
Provided in one example is a nonvolatile memory cross-bar array. The array includes: a number of junctions formed by a number of row lines intersecting a number of column lines; a first set of controls at a first set of the junctions coupling between a first set of the row lines and a first set of the column lines; a second set of controls at a second set of the junctions coupling between a second set of the row lines and a second sat of the column lines; and a current collection line to collect currents from the controls of the first set and the second set through their respective column lines and output a result current corresponding to a sum of a first dot product and a second dot product.
Abstract:
A method of obtaining a dot product includes applying a programming signal to a number of capacitive memory devices coupled at a number of junctions formed between a number of row lines and a number of column lines. The programming signal defines a number of values within a matrix. The method further includes applying a vector signal. The vector signal defines a number of vector values to be applied to the capacitive memory devices.
Abstract:
A negative differential resistance (NDR) device for non-volatile memory cells in crossbar arrays is provided. Each non-volatile memory cell is situated at a crosspoint of the array. Each non-volatile memory cell comprises a switching layer in series with an NDR material containing fast diffusive atoms that are electrochemically inactive. The switching layer is positioned between two elec-trodes.
Abstract:
In one example, a volatile selector is switched from a low conduction state to a first high conduction state with a first voltage level and then the first voltage level is removed to activate a relaxation time for the volatile selector. The relaxation time is defined as the time the first volatile selector transitions from the high conduction state back to the low conduction state. The volatile selector is switched with a second voltage level of opposite polarity to the first voltage level to significantly reduce the relaxation time of the volatile selector.
Abstract:
A method of obtaining a dot product includes applying a number of first voltages to a corresponding number of row lines within a memristive cross-bar array to change the resistive values of a corresponding number of memristors located a junctions between the row lines and a number of column lines. The first voltages define a corresponding number of values within a matrix, respectively. The method further includes applying a number of second voltages to a corresponding number of the row lines within the memristive cross-bar array. The second voltages define a corresponding number of vector values. The method further includes collecting the output currents from the column lines. The collected output currents define the dot product.