摘要:
There is disclosed a light emitting device comprising at least a semiconductor laser and an optical modulating element for modulating the output light from the semiconductor laser. In accordance with the present invention, a capacitive element for suppressing noise of the semiconductor laser arising from reflected light is disposed in parallel relation to current injection terminals of the semiconductor laser.
摘要:
An optical semiconductor device manufacturing method is disclosed which involves an ion implantation step of implanting ions into a compound semiconductor wafer through an ion implantation mask and an annealing step of activating atoms in the compound semiconductor wafer through an annealing mask film. The ion implantation step and the annealing step are performed in succession after laminating mono- or multi-layered compound semiconductor layers as the ion implantation mask and the annealing mask film on the compound semiconductor wafer.
摘要:
An optical modulation device is disclosed in which a difference between the photon energy of incident light and the band-gap energy of the modulation waveguide layer is set to a value greater than 50 meV to thereby suppress the degradation of the modulation voltage and the modulation band width which is caused by an increase in the intensity of incident light and in that the optical modulation device is formed in a predetermined length to thereby decrease the modulation voltage. The energy gap of the optical waveguide layer of the optical modulation device is varied continuously or discontinuously in the direction of its thickness to provide a constant absorption coefficient thickwise of the optical waveguide layer so that the electric field intensity distribution in the optical waveguide layer is compensated for, by which overlap of the light distribution and the absorption coefficient is increased so as to decrease the modulation voltage and broaden the modulation band by the reduction of the length of the device. The composition, thickness and stripe width of the optical waveguide layer are changed so that its absorption coefficient increases from the light receiving end face of the optical waveguide layer toward its light emitting end face, thereby making the number of carriers absorbed per unit length substantially constant in the direction of travel of light.
摘要:
An optical switch is formed by: at least one switch driving circuit for generating ultrasonic waves; at least one electric acousto-optic element forming at least one diffraction grating therein upon being applied with the ultrasonic waves generated by the switch driving circuit; at least one polarization rotator for rotating a polarization plane of a first primary diffracted light produced by the diffraction grating, by 90.degree.; and a light path through which an input light is entered into the electric acousto-optic element at a Bragg angle of the diffraction grating in a first direction side, the first direction being defined as either identical or opposite to a propagation direction of the ultrasonic waves, so that the first primary diffracted light is produced by the diffraction grating from the input light, a polarization plane rotated light produced by the polarization rotator is entered into the electric acousto-optic element at a Bragg angle of the diffraction grating in a second direction side, the second direction being opposite to the first direction, and a second primary diffracted light produced by the diffraction grating from the polarization plane rotated light is outputted as an output light.
摘要:
An optical modulating device is disclosed which has, on a substrate directly or via a lower cladding layer, an optical waveguide layer, an upper cladding layer of a refractive index smaller than that of the optical waveguide layer and a pair of electrodes for applying an electric field across the substrate and the upper cladding layer and in which the absorption coefficient for incident light of a fixed intensity incident to the optical waveguide layer is varied by the electric field applied across the pair of electrodes to perform the modulation of the light and the modulated light is emitted from a light emitting end face of the optical waveguide layer. In accordance with the present invention, a pn junction is formed in the upper cladding layer and at least one buffer layer of an energy gap smaller than that of the upper cladding layer but larger than that of the optical waveguide layer is interposed between the upper cladding layer and the optical waveguide layer.
摘要:
An optical modulation element is disclosed which has, on a substrate directly or through a lower clad layer, an optical waveguide layer of a low impurity concentration, an upper clad layer of a refractive index smaller than that of the optical waveguide layer, and electrodes, and in which light of a constant intensity incident on a light incident end face of the optical waveguide layer is intensity-modulated by changing the absorption coefficient of the optical waveguide layer by means of an electric field applied thereto across the electrodes so that the thus modulated light is emitted from a light emitting end face of the optical waveguide layer. In accordance with the present invention, a plurality of low impurity concentration regions and a plurality of high impurity concentration regions are disposed alternately with each other in contact with at least one of the lower and upper clad layers in the direction of travel of light in such a manner that the distribution density of the plurality of high impurity concentration regions increases in the direction of travel of light.
摘要:
A semiconductor integrated light emitting device is disclosed which comprises a light emitting waveguide including a light emitting layer, and an external waveguide directly coupled to the light emitting waveguide. In accordance with the present invention, the light emitting waveguide and the external waveguide are mutually laminated in the vicinity of a region where they are directly coupled together.The intensity of the optical output from the light emitting waveguide is modulated in the external waveguide by the electroabsorption effect.
摘要:
A semiconductor device with a distributed Bragg reflector is disclosed, in which periodic corrugations are formed between two semiconductor layers along the direction of travel of light. In accordance with the present invention, the periodic corrugations are formed by grid-like layers of a refractory material. The refractory material is an insulator, a refractory metal or a laminate member of an insulator and a refractory metal.
摘要:
An optical digital regenerator for digitally regenerating an input signal in an intact optical state. A first operating unit has a first probe light generator for generating a first probe light and a first optical operator for converting a waveform of the first probe light output from a first probe light generator according to an optical intensity waveform of the input signal light. A clock extractor extracts a clock component of the input signal light from a photocurrent generated by the first optical operator. A second optical operating unit has a second probe light generator for generating a second probe light pulsed in accordance with the clock output from the clock extractor and a second optical operator for sampling the second probe pulse light output from the second probe light generator.
摘要:
A waveform converter includes a transmission-type InGaAsP electroabsorption optical modulator 10 using the Franz-Keldysh effect. Continuous light (probe light) 12 as a target of wavelength conversion is fed to an end surface 10a of the optical modulator 10 while a constant voltage of 3 V is applied to the optical modulator 10. An optical circulator 14 is supplied with original signal light (signal light to be waveform-converted) 16 through its terminal A, and delivers it from the terminal B thereof to another end surface 10b of the optical modulator 10. The optical modulator 10 gives a loss to the probe light 12 according to the intensity of the original signal light 16 and makes the waveform of the probe light 12 to be substantially the same as the original signal light. The probe light waveform-converted by the optical modulator 10 and output from the end surface 10b is fed to a terminal B of an optical circulator 14 as a waveform-converted light 18 and output from its terminal C.