摘要:
An optical semiconductor device includes a semiconductor laser chip, a base for mounting the semiconductor laser chip and a solder layer sandwiched between the top surface of the base and the bottom surface of the semiconductor laser chip. The semiconductor laser chip is warped in upward convex shape.
摘要:
A semiconductor laser element has the following configuration: a dual-wavelength monolithic laser where semiconductor lasers with emission wavelengths of 650 nm and 780 nm are integrated on one chip is soldered on a heat sink which then is soldered on a can package. Two beam emission points of the semiconductor laser element are positioned so that beam spots, formed on an optical disk, of light beams emitted from the two semiconductor lasers are aligned substantially along a pit-row direction in the optical disk. Thus, an optical head device and an optical recording and reproducing apparatus can be obtained that can record information on or reproduce recorded information from optical information recording media with different optical characteristics and recording densities from one another and that do not cause instability in tracking servo operation.
摘要:
An object of the present invention is to provide a semiconductor laser device that has a simple structure that can easily be constructed, and can dissipate heat easily, and can improve its functionality and realize miniaturizing concurrently. The semiconductor laser device composes a metal plate 100 that is substantially the same as the bigger one of the widths of the silicon substrate 120 and the flexible sheet 130, a semiconductor laser element 110, a silicon substrate 120 into which a light detection circuit and a signal processing circuit are integrated, a flexible sheet 130, a wire 140 and an optical element 150. The flexible sheet 130 is divided into two on the metal plate 100, and the two divided flexible sheet 130 are positioned face to face sandwiching the silicon substrate 120.
摘要:
A lens holding member carrying an objective lens is movable and supported by a fixed member via a plurality of supporting members. Each supporting member includes a bent part in its base portion on the side of the fixed member. The bent part is bent in a first direction (focusing direction) and a second direction (tracking direction) that are perpendicular to each another. Each supporting member is shaped so as to make all the principal planes of the supporting member parallel to the second direction. The fixed member includes a concave, which is impregnated with a gel material so that the bent part is covered with the gel material.
摘要:
An optical pickup that is equipped with a photodetector unit, irradiates an optical disc with a laser beam, and receives returning light reflected by the optical disc, where the optical pickup is constructed to (1) divide the laser beam into a main beam, a preceding sub-beam, and a succeeding sub-beam, (2) direct the main beam, the preceding sub-beam, and the succeeding sub-beam toward the optical disc, and (3) divide returning lights of the main beam, the preceding sub-beam, and the succeeding sub-beam respectively into first-fourth main returning lights, first-fourth preceding returning lights, and first-fourth succeeding returning lights, and the photodetector unit includes: first-fourth main photodetectors that respectively receive the first-fourth main returning lights; first-fourth preceding photodetectors that respectively receive the first-fourth preceding returning lights; and first-fourth succeeding photodetectors that respectively receive the first-fourth succeeding returning lights. A tracking error signal appropriate to the optical disc to be reproduced is selected from three tracking error signals detected according to the detection signals from the photodetectors, and a tracking servo is driven according to the selected tracking error signal.
摘要:
A lead frame includes a die pad including a die pad main portion having a large thickness and a die pad peripheral portion having an intermediate thickness smaller than that of the die pad main portion, provided on at least one side of the die pad main portion, at least one support lead connected to the die pad, and at least two first inner leads having a small thickness smaller than that of the die pad peripheral portion, arranged such that end portions thereof are opposed to the die pad peripheral portion. The thick die pad provides good heat release properties, and reducing the thickness of the leads allows fine pitched leads to be produced. Such a lead frame can be manufactured easily by press stamping after belt-shaped regions having different thickness are formed by rolling.
摘要:
A movable enclosure contains optical components, such as an objective lens, a semiconductor laser, a mirror, and a photodetector. The movable enclosure is supported by a fixed member via a plurality of wires that are positioned in parallel. This construction allows the movable enclosure to move in a tracking direction and a focusing direction. The plurality of wires are insulated from one another to be also used as power-supplying lines and signal lines for the semiconductor laser and the photodetector.
摘要:
A semiconductor laser device includes a semiconductor laser element for emitting laser light onto a recording medium; beam dividing element provided in an optical path between the semiconductor laser element and the recording medium; a hologram optical element including a diffraction grating formed in a light-transmitting substrate, the hologram optical element located in an optical path between the beam dividing element and the semiconductor laser element; a servo-signal light-receiving element provided in an optical path of diffracted light transmitted through the diffraction grating for receiving the diffracted light; an information-signal light-receiving element for receiving light divided by the beam-dividing element, which is different from light divided by the beam-dividing element which is received by the diffraction grating; and a polarizing element provided in an optical path between the beam dividing element and the information-signal light-receiving element, wherein the semiconductor laser element, the servo-signal light-receiving element and the information-signal light-receiving element are provided within a single package, and the information-signal light-receiving element is provided outside an optical path of every order of diffracted light transmitted through the diffraction grating.
摘要:
A method of performing anisotropic etching more than once with respect to a semiconductor substrate (1) is provided with the steps of performing first-time anisotropic etching by using a first etching mask (2) so as to form a first anisotropically etched region (4) which is hollow, forming a second etching mask (7) over the first etching mask (2), performing second-time anisotropic etching by using the second etching mask (7), and previously forming the first etching mask (2) from a material which is resistant to an etchant used for patterning the second etching mask (7) before the first-time anisotropic etching is performed. Thus, the edge portion (6) of the first etched region (4) is protected so that its configuration is excellently maintained. By way of example, either of the etching masks is composed of a dielectric material such as a silicon dioxide film, while the other etching mask is composed of a metallic material such as Au and Ti, and the second-time anisotropic etching is performed by using diluted potassium hydroxide.
摘要:
An optoelectronic device that provides an excellent reproduction signal and a stable servo control while preventing deterioration of S/N ratio caused by stray light. The optoelectronic device has a semiconductor laser (101) that emits light beams on an information-recording medium (105), a hologram optical element (102) having a diffraction grating region (108) and located between the semiconductor laser (101) and the information-recording medium (105), and a photodetector (106) for receiving light that is diffracted at the diffraction grating region (108) of the hologram optical element (102), among returning light beams from the information-recording medium (105), and the optoelectronic device has also a diffraction grating region (107) in the vicinity of the diffraction grating region (108) of the hologram optical element (102) so as to prevent stray light other than diffracted light from the diffraction grating region (108) from entering the photodetector (106).