Abstract:
A semiconductor chip may have at least one p-channel field effect transistor (FET), at least one n-channel FET, a first and a second power supply terminal, wherein the at least one n-channel FET, if supplied with the upper supply potential at its gate, supplies the lower supply potential to the gate of the at least one p-channel FET and the at least one p-channel FET, if supplied with the lower supply potential at its gate, supplies the upper supply potential to the gate of the at least one n-channel FET, a precharge circuit to precharge the circuit to a first state, and a detection circuit configured to output an alarm signal if the circuit enters a second state.
Abstract:
According to one embodiment, an integrated electronic circuit has a switching network configured to receive binary control states, one or more secret-carrying gates, wherein each secret-carrying gate represents Boolean secrets and is configured to receive binary input states and to output one or more Boolean secrets according to a state sequence of the binary input states, and one or more flip-flops configured to store binary output states output by the switching network and to supply binary input states to the one or more secret-carrying gates based on the stored binary output states. The switching network generates the binary output states by combining the binary control states and Boolean secrets output by the one or more secret-carrying gates. The integrated electronic circuit outputs Boolean secrets from the one or more secret-carrying gates and/or the binary output states from the switching network to another integrated electronic circuit.
Abstract:
A chip having a substrate region having a substrate contact, an RS latch having two complementary nodes representing a storage state of the RS latch, a control circuit having a control input and configured to connect one of the complementary nodes to a supply potential depending on a potential at the control input, wherein the control input is connected to the substrate contact, and an output circuit connected to an output of the RS latch and configured to trigger an alarm depending on the storage state of the RS latch.
Abstract:
A delay circuit includes an electronic transmission element with a first input and a first output. The first input is coupled to the first output by two first switches wired in parallel. The first switches each have a control input, a second input and a second output. The second input is coupled to the second output by two second switches wired in parallel. The circuit further includes an input circuit to receive an input signal and feed the input signal to one of the transmission element inputs and feed the inverted input signal to the other of the transmission element inputs, and an output circuit. The output circuit is configured such that the output signal only changes in the case of a change in the input signal if the change in the input signal has brought about a change both at the first output and at the second output.
Abstract:
In accordance with one embodiment, a method for accessing a memory is provided, including carrying out a first access to the memory and charging, for a memory cell, a bit line coupled to the memory cell to a value which is stored or to be stored in the memory cell, holding the state of the bit line until a second access, which follows the first access, and outputting the held state if the second access is a read access to the memory cell.
Abstract:
According to one embodiment, a chip is described comprising a substrate; an energy source configured to provide energy to the substrate; an energy receiver configured to receive energy from the energy source via the substrate and a determiner configured to determine a value of a parameter of the energy transmission between the energy source and the energy receiver, to check whether the value matches a predetermined value of the parameter and to output a signal depending on the result of the check.
Abstract:
A method for manufacturing a digital circuit is described including forming a plurality of field effect transistor pairs, connecting the field effect transistors of the field effect transistor pairs such that in response to a first transition from a first state of two nodes of the digital circuit and in response to a second transition from a second state of the nodes of the digital circuit the nodes each have an undefined logic state when, for each field effect transistor pair, the threshold voltages of the field effect transistors of the field effect transistor pair are equal and setting the threshold voltages of the field effect transistors of the field effect transistor pairs such that the nodes each have a predetermined defined logic state in response to the first transition and in response to the second transition.
Abstract:
According to one embodiment, a chip is described comprising a plurality of supply lines delimiting a plurality of cell areas and a gate comprising a first transistor and a second transistor, wherein the first transistor is located in a first cell area of the plurality of cell areas and the second transistor is located in a second cell area of the plurality of cell areas such that a supply line of the plurality of supply lines lies between the first cell area and the second cell area.
Abstract:
A semiconductor component includes a semiconductor substrate, and a doped well having a well terminal and a transistor structure having at least one potential terminal formed in the semiconductor substrate. The transistor structure has a parasitic thyristor, and is at least partly arranged in the doped well. The potential terminal and the well terminal are connected via a resistor.
Abstract:
In accordance with an embodiment, a description is given of a storage circuit including an input stage configured to provide a value to be stored, a storage stage configured to store the value to be stored, an output stage configured to output a value stored by the storage circuit, and a control circuit, wherein the control circuit is configured to receive a signal from the output stage, which signal indicates the charge state of the output stage, and, if the charge state of the output stage is equal to a predefined precharge state, to output an activation signal to the storage stage, and wherein the storage stage is configured to store the value to be stored, provided by the input stage, in reaction to the activation signal.