Abstract:
One embodiment provides an apparatus. The apparatus includes a first inverter comprising a first pull up transistor and a first pull down transistor; a second inverter cross coupled to the first inverter, the second inverter comprising a second pull up transistor and a second pull down transistor; a first access transistor coupled to the first inverter; and a second access transistor coupled to the second inverter. A gate electrode of one transistor of each inverter comprises a polarization layer.
Abstract:
Described herein are ferroelectric memory cells and corresponding methods and devices. For example, in some embodiments, a ferroelectric memory cell disclosed herein includes one access transistor and one ferroelectric transistor (1T-1FE-FET cell). The access transistor is coupled to the ferroelectric transistor by sharing its source/drain terminal with that of the ferroelectric transistor and is used for both READ and WRITE access to the ferroelectric transistor.
Abstract:
Described is a ferroelectric-based capacitor that improves reliability of a ferroelectric memory by using low-leakage insulating thin film. In one example, the low-leakage insulating thin film is positioned between a bottom electrode and a ferroelectric oxide. In another example, the low-leakage insulating thin film is positioned between a top electrode and ferroelectric oxide. In yet another example, the low-leakage insulating thin film is positioned in the middle of ferroelectric oxide to reduce the leakage current and improve reliability of the ferroelectric oxide.
Abstract:
Described is an apparatus which comprises: a first p-type Tunneling Field-Effect Transistor (TFET); a first n-type TFET coupled in series with the first p-type TFET; a first node coupled to gate terminals of the first p-type and n-type TFETs; a first clock node coupled to a source terminal of the first TFET, the first clock node is to provide a first clock; and a second clock node coupled to a source terminal of the second TFET, the second clock node is to provide a second clock.
Abstract:
Described is an apparatus which comprises: a first p-type Tunneling Field-Effect Transistor (TFET); a first n-type TFET coupled in series with the first p-type TFET; a first node coupled to gate terminals of the first p-type and n-type TFETs; a first clock node coupled to a source terminal of the first TFET, the first clock node is to provide a first clock; and a second clock node coupled to a source terminal of the second TFET, the second clock node is to provide a second clock.
Abstract:
Tunneling field effect transistors (TFETs) for CMOS architectures and approaches to fabricating N-type and P-type TFETs are described. For example, a tunneling field effect transistor (TFET) includes a homojunction active region disposed above a substrate. The homojunction active region includes a relaxed Ge or GeSn body having an undoped channel region therein. The homojunction active region also includes doped source and drain regions disposed in the relaxed Ge or GeSn body, on either side of the channel region. The TFET also includes a gate stack disposed on the channel region, between the source and drain regions. The gate stack includes a gate dielectric portion and gate electrode portion.
Abstract:
Embodiments include apparatuses, methods, and systems for a circuit to shift a voltage level. The circuit may include a first inverter that includes a first transistor coupled to pass a low voltage signal and a second inverter coupled to receive the low voltage signal. The circuit may further include a second transistor coupled to receive the low voltage signal from the second inverter to serve as a feedback device and produce a high voltage signal. In embodiments, the first transistor conducts asymmetrically to prevent crossover of the high voltage signal into the low voltage domain. A low voltage memory array is also described. In embodiments, the circuit to shift a voltage level may assist communication between a logic component including the low voltage memory array of a low voltage domain and a logic component of a high voltage domain. Additional embodiments may also be described.
Abstract:
Embodiments include apparatuses, methods, and systems for a circuit to shift a voltage level. The circuit may include a first inverter that includes a first transistor coupled to pass a low voltage signal and a second inverter coupled to receive the low voltage signal. The circuit may further include a second transistor coupled to receive the low voltage signal from the second inverter to serve as a feedback device and produce a high voltage signal. In embodiments, the first transistor conducts asymmetrically to prevent crossover of the high voltage signal into the low voltage domain. A low voltage memory array is also described. In embodiments, the circuit to shift a voltage level may assist communication between a logic component including the low voltage memory array of a low voltage domain and a logic component of a high voltage domain. Additional embodiments may also be described.
Abstract:
Embodiments disclosed herein comprise semiconductor devices with two dimensional (2D) semiconductor channels and methods of forming such devices. In an embodiment, the semiconductor device comprises a source contact and a drain contact. In an embodiment, a 2D semiconductor channel is between the source contact and the drain contact. In an embodiment, the 2D semiconductor channel is a shell.
Abstract:
Techniques and mechanisms for forming a gate dielectric structure and source or drain (S/D) structures on a monolayer channel structure of a transistor. In an embodiment, the channel structure comprises a two-dimensional (2D) layer of a transition metal dichalcogenide (TMD) material. During fabrication of the transistor structure, a layer of a dielectric material is deposited on the channel structure, wherein the dielectric material is suitable to provide a reaction, with a plasma, to produce a conductive material. While a first portion of the dielectric material is covered by a patterned structure, a second portion of the dielectric material is exposed to a plasma treatment to form a source or dielectric (S/D) electrode structure that adjoins the first portion. In another embodiment, the dielectric material is an oxide of a Group V-VI transition metal.