Abstract:
A device for passing a biopolymer molecule includes a nanochannel formed between a surface relief structure, a patterned layer forming sidewalls of the nanochannel and a sealing layer formed over the patterned layer to encapsulate the nanochannel. The surface relief structure includes a three-dimensionally rounded surface that reduces a channel dimension of the nanochannel at a portion of nanochannel and gradually increases the dimension along the nanochannel toward an opening position, which is configured to receive a biopolymer.
Abstract:
A nanodevice includes a reservoir filled with conductive fluid and a membrane separating the reservoir. A nanopore is formed through the membrane having electrode layers separated by insulating layers. A certain electrode layer has a first type of organic coating and a pair of electrode layers has a second type. The first type of organic coating forms a motion control transient bond to a molecule in the nanopore for motion control, and the second type forms first and second transient bonds to different bonding sites of a base of the molecule. When a voltage is applied to the pair of electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels via the first and second transient bonds formed to be measured as a current signature for distinguishing the base. The motion control transient bond is stronger than first and second transient bonds.
Abstract:
A nanodevice includes a reservoir filled with conductive fluid and a membrane separating the reservoir. A nanopore is formed through the membrane having electrode layers separated by insulating layers. A certain electrode layer has a first type of organic coating and a pair of electrode layers has a second type. The first type of organic coating forms a motion control transient bond to a molecule in the nanopore for motion control, and the second type forms first and second transient bonds to different bonding sites of a base of the molecule. When a voltage is applied to the pair of electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels via the first and second transient bonds formed to be measured as a current signature for distinguishing the base. The motion control transient bond is stronger than first and second transient bonds.
Abstract:
A technique includes forming a gradient channel with width and depth gradients. A mask is disposed on top of a substrate. The mask is patterned with at least one elongated channel pattern having different elongated channel pattern widths. A channel is etched in the substrate in a single etching step, the channel having a width gradient and a corresponding depth gradient both simultaneously etched in the single etching step according to the different elongated channel pattern widths in the mask.
Abstract:
A technique is provided for a structure. A substrate has a nanopillar vertically positioned on the substrate. A bottom layer is formed beneath the substrate. A top layer is formed on top of the substrate and on top of the nanopillar, and a cover layer covers the top layer and the nanopillar. A window is formed through the bottom layer and formed through the substrate, and the window ends at the top layer. A nanopore is formed through the top layer by removing the cover layer and the nanopillar.
Abstract:
A mechanism is provided for base recognition of an integrated transistor and nanochannel. A target molecule is forced down to a carbon nanotube a single base at a time in the nanochannel by applying a gate voltage to a top electrode, and/or a narrow thickness of the nanochannel. The nanochannel exposes an exposed portion of the carbon nanotube at a bottom wall, and the top electrode is positioned over the exposed portion. The exposed portion of the carbon nanotube is smaller than the distance between bases to only accommodate the single base at a time. The target molecule is stretched by the narrow thickness and by applying a traverse voltage across a length direction of the nanochannel. The target molecule is frictionally restricted by the narrow thickness of the nanochannel to stretch is restrictedly translocates in the length direction. Current is measured to determine an identity of the single base.
Abstract:
A mechanism is provided for base recognition of an integrated transistor and nanochannel. A target molecule is forced down to a carbon nanotube a single base at a time in the nanochannel by applying a gate voltage to a top electrode, and/or a narrow thickness of the nanochannel. The nanochannel exposes an exposed portion of the carbon nanotube at a bottom wall, and the top electrode is positioned over the exposed portion. The exposed portion of the carbon nanotube is smaller than the distance between bases to only accommodate the single base at a time. The target molecule is stretched by the narrow thickness and by applying a traverse voltage across a length direction of the nanochannel. The target molecule is frictionally restricted by the narrow thickness of the nanochannel to stretch is restrictedly translocates in the length direction. Current is measured to determine an identity of the single base.
Abstract:
Techniques relate to forming a sorting device. A mesh is formed on top of a substrate. Metal assisted chemical etching is performed to remove substrate material of the substrate at locations of the mesh. Pillars are formed in the substrate by removal of the substrate material. The mesh is removed to leave the pillars in a nanopillar array. The pillars in the nanopillar array are designed with a spacing to sort particles of different sizes such that the particles at or above a predetermined dimension are sorted in a first direction and the particles below the predetermined dimension are sorted in a second direction.
Abstract:
A nanodevice includes a reservoir filled with conductive fluid and a membrane separating the reservoir. A nanopore is formed through the membrane having electrode layers separated by insulating layers. A certain electrode layer has a first type of organic coating and a pair of electrode layers has a second type. The first type of organic coating forms a motion control transient bond to a molecule in the nanopore for motion control, and the second type forms first and second transient bonds to different bonding sites of a base of the molecule. When a voltage is applied to the pair of electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels via the first and second transient bonds formed to be measured as a current signature for distinguishing the base. The motion control transient bond is stronger than first and second transient bonds.
Abstract:
Techniques for increasing the capture zone in nano and microchannel-based polymer testing structures using concentric arrangements of nanostructures, such as nanopillars are provided. In one aspect, a testing structure for testing polymers is provided that includes a first fluid reservoir and a second fluid reservoir formed in an electrically insulating substrate; at least one channel formed in the insulating substrate that interconnects the first fluid reservoir and the second fluid reservoir; and an arrangement of nanostructures within either the first fluid reservoir or the second fluid reservoir wherein the nanostructures are arranged so as to form multiple concentric circles inside either the first fluid reservoir or the second fluid reservoir with each of the concentric circles being centered at an entry point of the channel. A method of analyzing a polymer using the testing structure is also provided.