Abstract:
A technique related to sorting entities is provided. An inlet is configured to receive a fluid, and an outlet is configured to exit the fluid. A nanopillar array, connected to the inlet and the outlet, is configured to allow the fluid to flow from the inlet to the outlet. The nanopillar array includes nanopillars arranged to separate entities by size. The nanopillars are arranged to have a gap separating one nanopillar from another nanopillar. The gap is constructed to be in a nanoscale range.
Abstract:
A technique relates sorting biopolymers. The biopolymers are introduced into a nanopillar array, and the biopolymers include a first population and a second population. The nanopillar array includes nanopillars arranged to have a gap separating one from another. The biopolymers are sorted through the nanopillar array by transporting the first population of the biopolymers less than a predetermined bumping size according to a fluid flow direction and by transporting the second population of the biopolymers at least the predetermined bumping size according to a bumped direction different from the fluid flow direction. The nanopillar array is configured to employ the gap with a gap size less than 300 nanometers in order to sort the biopolymers.
Abstract:
A technique relates sorting biopolymers. The biopolymers are introduced into a nanopillar array, and the biopolymers include a first population and a second population. The nanopillar array includes nanopillars arranged to have a gap separating one from another. The biopolymers are sorted through the nanopillar array by transporting the first population of the biopolymers less than a predetermined bumping size according to a fluid flow direction and by transporting the second population of the biopolymers at least the predetermined bumping size according to a bumped direction different from the fluid flow direction. The nanopillar array is configured to employ the gap with a gap size less than 300 nanometers in order to sort the biopolymers.
Abstract:
A device for passing a biopolymer molecule includes a nanochannel formed between a surface relief structure, a patterned layer forming sidewalls of the nanochannel and a sealing layer formed over the patterned layer to encapsulate the nanochannel. The surface relief structure includes a three-dimensionally rounded surface that reduces a channel dimension of the nanochannel at a portion of nanochannel and gradually increases the dimension along the nanochannel toward an opening position, which is configured to receive a biopolymer.
Abstract:
Apparatus for enhancing on-chip fluorescence detection. For example, an apparatus comprises a microfluidic channel, an excitation signal enhancing structure formed on a first side of the microfluidic channel and a photodetector structure formed on a second side of the microfluidic channel. For example, the excitation signal enhancing structure enhances an excitation signal and the enhanced excitation signal excites one or more samples in the microfluidic channel to emit signals at a fluorescence wavelength at a higher rate.
Abstract:
Apparatus for enhancing on-chip fluorescence detection. For example, an apparatus comprises a microfluidic channel, an excitation signal enhancing structure formed on a first side of the microfluidic channel and a photodetector structure formed on a second side of the microfluidic channel. For example, the excitation signal enhancing structure enhances an excitation signal and the enhanced excitation signal excites one or more samples in the microfluidic channel to emit signals at a fluorescence wavelength at a higher rate.
Abstract:
A technique relates sorting biopolymers. The biopolymers are introduced into a nanopillar array, and the biopolymers include a first population and a second population. The nanopillar array includes nanopillars arranged to have a gap separating one from another. The biopolymers are sorted through the nanopillar array by transporting the first population of the biopolymers less than a predetermined bumping size according to a fluid flow direction and by transporting the second population of the biopolymers at least the predetermined bumping size according to a bumped direction different from the fluid flow direction. The nanopillar array is configured to employ the gap with a gap size less than 300 nanometers in order to sort the biopolymers.
Abstract:
A nanogap of controlled width in-between noble metals is produced using sidewall techniques and chemical-mechanical-polishing. Electrical connections are provided to enable current measurements across the nanogap for analytical purposes. The nanogap in-between noble metals may also be formed inside a Damascene trench. The nanogap in-between noble metals may also be inserted into a crossed slit nanopore framework. A noble metal layer on the side of the nanogap may have sub-layers serving the purpose of multiple simultaneous electrical measurements.
Abstract:
A mixed polynucleotide includes a first double stranded (ds) portion, a second portion including at least one single stranded (ss) portion, and a third ds portion. The second portion connects the first ds portion and the third ds portion to provide a modified polynucleotide.
Abstract:
A technique relates sorting entities. The entities are introduced into a nanopillar array. The entities include a first population and a second population, and the nanopillar array includes nanopillars arranged to have a gap separating one from another. The nanopillars are ordered to have an array angle relative to a fluid flow direction. The entities are sorted through the nanopillar array by transporting the first population of the entities less than a predetermined size in a first direction and by transporting the second population of the entities at least the predetermined size in a second direction different from the first direction. The nanopillar array is configured to employ the gap with a gap size less than 300 nanometers in order to sort the entities having a sub-100 nanometer size.