摘要:
This document describes biochemical pathways for producing 2,3-dehydroadipyl-CoA methyl ester from precursors such as 2-oxoglutarate using one or more of a fatty acid O-methyltransferase, a thioesterase, a CoA-transferase and a CoA ligase, as well as recombinant hosts expressing one or more of such enzymes. 2,3-dehydroadipyl-CoA methyl ester can be enzymatically converted to adipyl-CoA using a trans-2-enoyl-CoA reductase, and a methylesterase, which in turn can be enzymatically converted to adipic acid, 6-aminohexanoate, 6-hydroxyhexanoate, caprolactam, hexamethylenediamine, or 1,6-hexanediol.
摘要:
This document describes biochemical pathways for producing adipic acid, caprolactam, 6-aminohexanoic acid, 6-hydroxyhexanoic acid, hexamethylenediamine or 1,6-hexanediol by forming two terminal functional groups, comprised of carboxyl, amine or hydroxyl groups, in a C6 aliphatic backbone substrate. These pathways, metabolic engineering and cultivation strategies described herein rely on CoA-dependent elongation enzymes or analogs enzymes associated with the carbon storage pathways from polyhydroxyalkanoate accumulating bacteria.
摘要:
This document describes biochemical pathways for producing adipic acid, 6-aminohexanoic acid, 6-hydroxhexanoic acid, hexamethylenediamine, caprolactam, or 1,6-hexanediol by forming one or two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in a C6 aliphatic backbone substrate. These pathways, metabolic engineering and cultivation strategies described herein rely on the enzymes or homologs accepting methyl ester shielded dicarboxylic acid substrates.
摘要:
This document describes biochemical pathways for producing one or more of pimelic acid, 7-aminoheptanoic acid, 7-hydroxyheptanoic acid, heptamethylenediamine and 1,7-heptanediol by forming one or two terminal functional groups, comprised of carboxyl, amine or hydroxyl groups, in a C7 aliphatic backbone substrate produced from succinate semialdehyde or pyruvate. These pathways, metabolic engineering and cultivation strategies described herein rely on the aldol condensation of succinate semialdehyde and pyruvate.
摘要:
This document describes biochemical pathways for producing adipic acid, caprolactam, 6-aminohexanoic acid, 6-hydroxyhexanoic acid, hexamethylenediamine or 1,6-hexanediol by forming two terminal functional groups, comprised of carboxyl, amine or hydroxyl groups, in a C6; backbone substrate. These pathways, metabolic engineering and cultivation strategies described herein rely on CoA-dependent elongation enzymes or analogues enzymes associated with the carbon storage pathways from polyhydroxyalkanoate accumulating bacteria.
摘要:
This document describes biochemical pathways for producing glutaric acid, 5-aminopentanoic acid, 5-hydroxypentanoic acid, cadaverine or 1,5-pentanediol by forming one or two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in a C5 backbone substrate such as malonyl-CoA or malonyl-[acp].
摘要:
This document describes biochemical pathways for producing 2-aminopimelate from 2,6-diaminopimelate, and methods for converting 2-aminopimelate to one or more of adipic acid, adipate semialdehyde, caprolactam, 6-aminohexanoic acid, 6-hexanoic acid, hexamethylenediamine, or 1,6-hexanediol by decarboxylating 2-aminopimelate into a six carbon chain aliphatic backbone and enzymatically forming one or two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in the backbone.
摘要:
This document describes biochemical pathways for producing one or more of pimelic acid, 7-aminoheptanoic acid, 7-hydroxyheptanoic acid, heptamethylenediamine and 1,7-heptanediol by forming one or two terminal functional groups, comprised of carboxyl, amine or hydroxyl groups, in a C7 aliphatic backbone substrate produced from succinate semialdehyde or pyruvate. These pathways, metabolic engineering and cultivation strategies described herein rely on the aldol condensation of succinate semialdehyde and pyruvate.
摘要:
The document provides methods for biosynthesizing isobutene using one or more isolated enzymes such as one or more of an enoyl-CoA dehydratase, a 2-hydroxyacyl-CoA dehydratase, an isovaleryl-CoA/acyl-CoA dehydrogenase and a mevalonate diphosphate decarboxylase, or using recombinant host cells expressing one or more such enzymes.
摘要:
This document describes biochemical pathways for producing glutaric acid, 5-aminopentanoic acid, 5-hydroxypentanoic acid or 1,5-pentanediol by forming one or two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in a C5 backbone substrate such as cadaverine or 5-aminopentanamide.