Abstract:
An electron emission lithography apparatus and method using a selectively grown carbon nanotube as an electron emission source, wherein the electron emission lithography apparatus includes an electron emission source installed within a chamber and a stage, which is separated from the electron emission source by a predetermined distance and on which a sample is mounted, and wherein the electron emission source is a carbon nanotube having electron emission power. Since a carbon nanotube is used as an electron emission source, a lithography process can be performed with a precise critical dimension that prevents a deviation from occurring between the center of a substrate and the edge thereof and may realize a high throughput.
Abstract:
A ferroelectric read and write memory of a nondestructive write and read (NDWR) method in which charges of a gate insulating layer induced by a ferroelectric capacitor are discharged via a separate path, includes a source and a drain provided in both side of a well; a gate insulating layer provided on the well; a gate electrode provided on the gate insulating layer; a ferroelectric layer provided on the gate electrode, to which corresponding charges are induced in the gate electrode depending on its polar states; an upper electrode provided on the ferroelectric layer; and a charge discharging means electrically connected to the gate electrode for discharging charges induced in the gate insulating layer. In a driving method thereof, charges of the gate insulating layer induced by the ferroelectric layer are directly discharged via the gate electrode to make a logic "low" state by blocking the current flow between the source and insulating layer through the well during a binary logic information write operation. Therefore, if the information is written in a non-inversion state of the polarization, a fatigue of the ferroelectric layer can be prevented. Also, as described above, since the remained polarization still exists during the repeated information write operations, the information can be written at a low voltage.
Abstract:
A memory device may include a switching device and a storage node coupled with the switching device. The storage node may include a first electrode, a second electrode, a data storage layer and at least one contact layer. The data storage layer may be disposed between the first electrode and the second electrode and may include a transition metal oxide or aluminum oxide. The at least one contact layer may be disposed at least one of above or below the data storage layer and may include a conductive metal oxide.
Abstract:
The non-volatile memory device may include a substrate, a plurality of first signal lines on the substrate in a vertical direction, a plurality of memory cells having ends connected to the plurality of first signal lines, a plurality of second signal lines perpendicular to the plurality of first signal lines on the substrate and each connected to other ends of the plurality of memory cells, and a plurality of selection elements on the substrate and connected to at least two of the plurality of first signal lines.
Abstract:
A nonvolatile memory device includes at least one switching device and at least one storage node electrically connected to the at least one switching device. The at least one storage node includes a lower electrode, one or more oxygen-deficient metal oxide layers, one or more data storage layers, and an upper electrode. At least one of the one or more metal oxide layers is electrically connected to the lower electrode. At least one of the one or more data storage layers is electrically connected to at least one of the one or more metal oxide layers. The upper electrode is electrically connected to at least one of the one or more data storage layers. A method of manufacturing the nonvolatile memory device includes preparing the at least one switching device and forming the lower electrode, one or more metal oxide layers, one or more data storage layers, and upper electrode.
Abstract:
A storage node having a metal-insulator-metal structure, a non-volatile memory device including a storage node having a metal-insulator-metal (MIM) structure and a method of operating the same are provided. The memory device may include a switching element and a storage node connected to the switching element. The storage node may include a first metal layer, a first insulating layer and a second metal layer, sequentially stacked, and a nano-structure layer. The storage node may further include a second insulating layer and a third metal layer. The nano-structure layer, which is used as a carbon nano-structure layer, may include at least one fullerene layer.
Abstract:
An electrode structure having at least two oxide layers that more reliably switch and operate without the use of additional devices and a non-volatile memory device having the same are provided. The electrode structure may include a lower electrode, a first oxide layer formed on the lower electrode, a second oxide layer formed on the first oxide layer and an upper electrode formed on the second oxide layer wherein at least one of the first and second oxide layers may be formed of a resistance-varying material. The first oxide layer may be formed of an oxide having a variable oxidation state.
Abstract:
An emitter for an electron-beam projection lithography system includes a photoconductor substrate, an insulating layer formed on a front surface of the photoconductor substrate, a gate electrode layer formed on the insulating layer, and a base electrode layer formed on a rear surface of the photoconductor substrate and formed of a transparent conductive material. In operation of the emitter, a voltage is applied between the base electrode and the gate electrode layer, light is projected onto a portion of the photoconductor substrate to convert the portion of the photoconductor substrate into a conductor such that electrons are emitted only from the partial portion where the light is projected. Since the emitter can partially emit electrons, partial correcting, patterning or repairing of a subject electron-resist can be realized.
Abstract:
A nonvolatile memory device includes at least one switching device and at least one storage node electrically connected to the at least one switching device. The at least one storage node includes a lower electrode, one or more oxygen-deficient metal oxide layers, one or more data storage layers, and an upper electrode. At least one of the one or more metal oxide layers is electrically connected to the lower electrode. At least one of the one or more data storage layers is electrically connected to at least one of the one or more metal oxide layers. The upper electrode is electrically connected to at least one of the one or more data storage layers. A method of manufacturing the nonvolatile memory device includes preparing the at least one switching device and forming the lower electrode, one or more metal oxide layers, one or more data storage layers, and upper electrode.
Abstract:
A method of manufacturing a nanochannel-array and a method of fabricating a nanodot using the nanochannel-array are provided. The nanochannel-array manufacturing method includes: performing first anodizing to form a first alumina layer having a channel array formed by a plurality of cavities on an aluminum substrate; etching the first alumina layer to a predetermined depth and forming a plurality of concave portions on the aluminum substrate, wherein each concave portion corresponds to the bottom of each channel of the first alumina layer; and performing second anodizing to form a second alumina layer having an array of a plurality of channels corresponding to the plurality of concave portions on the aluminum substrate. The array manufacturing method makes it possible to obtain finely ordered cavities and form nanoscale dots using the cavities.