Abstract:
A method for manufacturing an exhaust gas treatment component having at least one structured piece of sheet metal, includes shaping the at least one piece of sheet metal with at least one fluid stream. A device for producing a structured piece of sheet metal is also provided.
Abstract:
A method for producing metal fibers includes a machining production method using at least one rotating tool. A device for producing metal fibers, a filter material having such fibers, a method for producing the material, a particle filter using such material, a motor vehicle equipped with the filter, and a fiber, are also provided.
Abstract:
A honeycomb body includes a housing and a plurality of layers with a curved profile and a predetermined length. Each layer includes at least one at least partially structured metal foil forming a multiplicity of passages with a passage cross section. A majority of the layers have different lengths than one another. A process for producing a honeycomb body, a process for treating exhaust gas, and an exhaust gas assembly, are also provided.
Abstract:
A housing for a honeycomb body includes a jacket tube with an inner wall surface. The jacket tube has a passivation layer in at least one section of the inner wall surface in order to deliberately modify a connection to the honeycomb body by joining. A method for the production of a catalyst carrier body with a honeycomb body and a housing according to the invention are also indicated. A catalyst carrier body produced in this way reduces thermal stresses between the honeycomb body and the jacket tube and, in particular, ensures a reliable brazing process during production, even in a vacuum.
Abstract:
A device includes at least one tank having a tank bottom and a delivery unit for a liquid. The delivery unit is disposed in a chamber on the tank bottom and the chamber includes at least one heater. The tank preferably has at least one local ventilation heater extending from a discharge for liquid on the tank bottom over at least one tank side to the vicinity of a tank top.
Abstract:
A device for delivering a reducing agent, in particular a liquid urea-water solution, includes at least two of the following elements: a storage device (e.g. a tank), a delivery device (e.g. a pump), a deflecting device (e.g. a valve), a detecting device (e.g. a sensor), a separating device (e.g. a filter) and an outlet device (e.g. a nozzle, injector), which are interconnected by a line device. At least one element is pressure-sensitive and the adjacent line device near the pressure-sensitive element forms at least one heat sink. A device having a targeted freezing behavior is thus provided, allowing pressure-sensitive elements to be protected. A method for producing a motor vehicle is also provided.
Abstract:
A device for evaporating a urea-water solution includes a delivery duct for the urea-water solution. The delivery duct extends through at least a first zone and a second zone for the introduction of heat energy. The zones can be heated separately from one another and, in the second zone, the delivery duct initially has a meandering course in a second inlet region, and thereafter has a rectilinear course. A method for evaporating a urea-water solution includes pre-heating the urea-water solution in the first zone to a temperature in a range from 100° C. to 150° C. and evaporating the urea-water solution in the second zone at a temperature in a range from 420° C. to 490° C. In particular, this significantly reduces the tendency for such an exhaust-gas-external evaporator for a urea-water solution to become blocked. A motor vehicle is also provided.
Abstract:
A method for selectively heating a reducing agent line of an SCR device during operation of an exhaust gas purification system of an internal combustion engine and a device for exhaust gas purification, include a supply tank for a reducing agent for SCR applications, a device for introducing the reducing agent into an exhaust line of an internal combustion engine and at least one reducing agent line for fluidically connecting the supply tank to the device.
Abstract:
A configuration for purification of an exhaust gas flow of an internal combustion engine includes at least one exhaust gas line having an element for exhaust gas purification with a first end face and a second end face. The exhaust gas flows through the element from the first end face to the second end face. An adding device is provided downstream of the element for adding a reactant to the exhaust gas flow. The adding device is positioned at a distance of no more than 30 mm from the second end face of the element in such a way that at least part of the added reactant strikes the second end face of the element. A method for adding a reactant into an exhaust line during the operation of an internal combustion engine is also provided.
Abstract:
An evaporation unit for evaporating an aqueous solution including at least one reducing agent precursor, includes at least one evaporator cavity defined by a wall made of a material containing titanium. A heat-imparting layer disposed outside the evaporator cavity is made of a material having a thermal conductivity of at least 100 W/mK (Watts per meter and Kelvin) and is connected to the evaporator cavity in a heat-conducting manner. A heating layer disposed outside the heat-imparting layer is connected in a materially integral manner to the heat-imparting layer. The evaporator unit can be controlled in a highly dynamic manner, thereby enabling a sufficiently high amount of ammonia to be produced even during rapid load changes and consequently significant increases in the concentration of nitric oxide in the exhaust gas of the internal combustion engine. A device and a motor vehicle having the evaporation unit are also provided.