摘要:
Methods and systems optimize power usage in an integrated circuit design by sorting the integrated circuit devices after manufacture into relatively slow integrated circuit devices and relatively fast integrated circuit devices to classify the integrated circuit devices into different voltage bins. The methods and systems establish a bin-specific reliability testing processes for each of the voltage bins and test the integrated circuit devices using a tester. This allows the methods and systems to identify as defective ones of the integrated circuit devices that fail the bin-specific integrated circuit reliability testing processes of a corresponding voltage bin. The methods and systems remove the defective ones of the integrated circuit devices to allow only non-defective integrated circuit devices to remain and supply the non-defective integrated circuit devices to a customer.
摘要:
Systems and methods receive a design of a circuit layout. The circuit layout has some available spaces. Such systems and methods automatically insert capacitor arrays in the specified spaces. Each of the capacitor arrays has capacitor cells, and each of the capacitor cells has capacitor structures and a buried implant. The process of inserting the capacitor arrays comprises a process of forming the capacitor arrays to either: grow the capacitor arrays to the size of the specified spaces; grow the capacitor arrays to a specified capacitance value within the restriction of the length dimension or the width dimension of the specified spaces; or grow the capacitor arrays to a specified capacitance value, irrespective of dimensional length dimension or width dimension limitations (where the only limitations are the dimensions of the specified space).
摘要:
A method of estimating integrated circuit yield comprises providing an integrated circuit layout and a set of systematic defects based on a manufacturing process. Next, the method represents a systematic defect by modifying structures in the integrated circuit layout to create modified structures. More specifically, for short-circuit-causing defects, the method pre-expands the structures when the structures comprise a higher systematic defect sensitivity level, and pre-shrinks the structures when the structures comprise a lower systematic defect sensitivity level. Following this, a critical area analysis is performed on the integrated circuit layout using the modified structures, wherein dot-throwing, geometric expansion, or Voronoi diagrams are used. The method then computes a fault density value, random defects and systematic defects are computed. The fault density value is subsequently compared to a predetermined value, wherein the predetermined value is determined using test structures and/or yield data from a target manufacturing process.
摘要:
A method of reliability evaluation and system fail warning using on chip parametric monitors. The method includes determining impact of parametric variation on reliability by identifying key parametric questions to be answered by stress, identifying parametric macros for each parameter, and identifying layout sensitive areas of evaluation. The process can also include a set of parametric macros in one of a test site or a product to be stressed, testing the set of parametric macros prior to start of stress and at each stress read out, and setting life time parameter profile for technology.
摘要:
An integrated circuit including a first wire of a first level of wiring tracks, a second wire of a second level of wiring tracks, a third wire of a third level of wiring tracks, and a fourth wire located a first distance from the second wire in the second level of wiring tracks. A first via connects the first and second wires at a first location of the second wire. A second via connects the second and third wires at the first location, the second via is substantially axially aligned with the first via. A third via connecting the third and fourth wires at a second location of the fourth wire. A fourth via connecting the first and fourth wires at the second location, the fourth via is substantially axially aligned with the third via. The second, third, and fourth vias, and the third and Fourth wires form a path between the first and second wires redundant to the first via.
摘要:
Disclosed are testing method embodiments in which, during post-manufacture testing, parametric measurements are taken from on-chip parametric measurement elements and used to optimize manufacturing in-line parametric control learning and/or to optimize product screening processes. Specifically, these post-manufacture parametric measurements can be used to disposition chips without shipping out non-conforming products, without discarding conforming products, and without requiring high cost functional tests. They can also be used to identify yield sensitivities to parametric variations from design and to provide feedback for manufacturing line improvements based on the yield sensitivities. Additionally, a historical database regarding the key parameters that are monitored at both the fabrication and post-fabrication levels can be used to predict future yield and, thereby, to preemptively improve the manufacturing line and/or also to update supply chain forecasts.
摘要:
A method of reliability evaluation and system fail warning using on chip parametric monitors. The method includes determining impact of parametric variation on reliability by identifying key parametric questions to be answered by stress, identifying parametric macros for each parameter, and identifying layout sensitive areas of evaluation. The process can also include a set of parametric macros in one of a test site or a product to be stressed, testing the set of parametric macros prior to start of stress and at each stress read out, and setting life time parameter profile for technology.
摘要:
A computer readable medium, system and associated method is provided for designing an integrated circuit with inserted loops. The method comprises the steps of inserting a loop with tagged wire segments and/or vias in a fully routed and DCR clean integrated circuit; performing a DRC; and fixing DRC violations by removing tagged wire segments and/or vias which contribute to a violation.
摘要:
A method of modeling yield for semiconductor products includes determining expected faults for each of a plurality of library elements by running a critical area analysis on each of the library elements, and assessing, from the critical area analysis, an expected number of faults per unit area, and comparing the same to actual observed faults on previously manufactured semiconductor products. Thereafter, the expected number of faults for each library element is updated in response to observed yield. A database is established, which includes the die size and expected faults for each of the library elements. Integrated circuit product die size is estimated, and library elements to be used to create the integrated circuit die are selected. Fault and size data for each of the selected library elements are obtained, the adjusted estimated faults for each of the library elements are summed, and estimated yield is calculated.
摘要:
An integrated circuit including a first wire of a first level of wiring tracks, a second wire of a second level of wiring tracks, a third wire of a third level of wiring tracks, and a fourth wire located a first distance from the second wire in the second level of wiring tracks. A first via connects the first and second wires at a first location of the second wire. A second via connects the second and third wires at the first location, the second via is substantially axially aligned with the first via. A third via connecting the third and fourth wires at a second location of the fourth wire. A fourth via connecting the first and fourth wires at the second location, the fourth via is substantially axially aligned with the third via. The second, third, and fourth vias, and the third and Fourth wires form a path between the first and second wires redundant to the first via.