摘要:
Methods and systems optimize power usage in an integrated circuit design by sorting the integrated circuit devices after manufacture into relatively slow integrated circuit devices and relatively fast integrated circuit devices to classify the integrated circuit devices into different voltage bins. The methods and systems establish a bin-specific reliability testing processes for each of the voltage bins and test the integrated circuit devices using a tester. This allows the methods and systems to identify as defective ones of the integrated circuit devices that fail the bin-specific integrated circuit reliability testing processes of a corresponding voltage bin. The methods and systems remove the defective ones of the integrated circuit devices to allow only non-defective integrated circuit devices to remain and supply the non-defective integrated circuit devices to a customer.
摘要:
Methods and systems optimize power usage in an integrated circuit design by sorting the integrated circuit devices after manufacture into relatively slow integrated circuit devices and relatively fast integrated circuit devices to classify the integrated circuit devices into different voltage bins. The methods and systems establish a bin-specific reliability testing processes for each of the voltage bins and test the integrated circuit devices using a tester. This allows the methods and systems to identify as defective ones of the integrated circuit devices that fail the bin-specific integrated circuit reliability testing processes of a corresponding voltage bin. The methods and systems remove the defective ones of the integrated circuit devices to allow only non-defective integrated circuit devices to remain and supply the non-defective integrated circuit devices to a customer.
摘要:
A plurality of digital circuits are manufactured from an identical circuit design. A power controller is operatively connect to the digital circuits, and a non-volatile storage medium is operatively connected to the power controller. The digital circuits are classified into different voltage bins, and each of the voltage bins has a current leakage limit. Each of the digital circuits has been previously tested to operate within a corresponding current leakage limit of a corresponding voltage bin into which each of the digital circuits has been classified. The non-volatile storage medium stores boundaries of the voltage bins as speed-binning test data. The power controller controls power-supply signals applied differently for each of the digital circuits based on which bin each of the digital circuit has been classified and the speed-binning test data.
摘要:
A plurality of digital circuits are manufactured from an identical circuit design. A power controller is operatively connect to the digital circuits, and a non-volatile storage medium is operatively connected to the power controller. The digital circuits are classified into different voltage bins, and each of the voltage bins has a current leakage limit. Each of the digital circuits has been previously tested to operate within a corresponding current leakage limit of a corresponding voltage bin into which each of the digital circuits has been classified. The non-volatile storage medium stores boundaries of the voltage bins as speed-binning test data. The power controller controls power-supply signals applied differently for each of the digital circuits based on which bin each of the digital circuit has been classified and the speed-binning test data.
摘要:
Operating speeds of integrated circuit devices are tested to establish maximum and minimum frequency at maximum and minimum voltage. The devices are sorted into relatively-slow and relatively-fast devices to classify the devices into different voltage bins. A bin-specific voltage limit is established for each of the voltage bins needed for core performance at system use conditions. The bin-specific voltage limit is compared to core minimum chip-level functionality voltage at system maximum and minimum frequency specifications. The method correlates system design evaluation of design maximum and minimum frequency at design maximum and minimum voltage conditions with evaluation of tested maximum and minimum frequency at tested maximum and minimum voltage conditions. A chip-specific functionality voltage limit is established for the device. Initial system voltage for all devices from a voltage bin is set at a greater of the bin-specific voltage limit and the chip-specific functionality voltage limit consistent with the evaluation conditions.
摘要:
A method and system for dispositioning integrated circuit chips. The method includes performing a performance path test on an integrated circuit chip having one or more clock domains, the performance path test based on applying test patterns to selected sensitizable data paths of the integrated circuit chip at different clock frequencies; and dispositioning the integrated circuit chip based on results of the performance path test.
摘要:
An integrated circuit including a first wire of a first level of wiring tracks, a second wire of a second level of wiring tracks, a third wire of a third level of wiring tracks, and a fourth wire located at a first distance from the second wire in the second level of wiring tracks. A first via connects the first and second wires at a first location of the second wire. A second via connects the second and third wires at the first location, the second via is approximately axially aligned with the first via. A third via connecting the third and fourth wires at a second location of the fourth wire. A fourth via connecting the first and fourth wires at the second location, the fourth via is approximately axially aligned with the third via. The second, third, and fourth vias, and the third and fourth wires form a path between the first and second wires redundant to the first via.
摘要:
A design structure for an integrated circuit including a first wire of a first level of wiring tracks, a second wire of a second level of wiring tracks, a third wire of a third level of wiring tracks, and a fourth wire located a first distance from the second wire in the second level of wiring tracks. A first via connects the first and second wires at a first location of the second wire. A second via connects the second and third wires at the first location, the second via is substantially axially aligned with the first via. A third via connecting the third and fourth wires at a second location of the fourth wire. A fourth via connecting the first and fourth wires at the second location, the fourth via is substantially axially aligned with the third via. The second, third, and fourth vias, and the third and fourth wires form a path between the first and second wires redundant to the first via.
摘要:
Embodiments herein provide a method and computer program product for optimizing router settings to increase IC yield. A method begins by reviewing yield data in an IC manufacturing line to identify structure-specific mechanisms that impact IC yield. Next, the method establishes a structural identifier for each structure-specific mechanism, wherein the structural identifiers include wire codes, tags, and/or unique identifiers. Different structural identifiers are established for wires having different widths. Furthermore, the method establishes a weighting factor for each structure-specific mechanism, wherein higher weighting factors are established for structure-specific mechanisms comprising thick wires proximate to multiple thick wires. The method establishes the structural identifiers and the weighting factors for incidence of spacing between single wide lines, double wide lines, and triple wide lines and for incidence of wires above large metal lands. Subsequently, the router settings are modified based on the structural identifiers and the weighting factors to minimize systematic defects.
摘要:
An integrated circuit (IC) design method for use as a design and/or manufacturing tool for designing and/or manufacturing integrated circuitry (110). The method utilizes one or more library element (150A-F) to provide a flexible modeling template. Each library element includes one or more module ports (160A-F) each for accepting any one of a plurality of device modules (170). The device modules are logical representations of corresponding respective portions of the integrated circuitry. For any given module port, the corresponding device modules may be interchanged essentially without additional integrated circuitry design changes.