摘要:
A non-planar microelectronic device, a method of fabricating the device, and a system including the device. The non-planar microelectronic device comprises: a substrate body including a substrate base and a fin, the fin defining a device portion at a top region thereof; a gate dielectric layer extending at a predetermined height on two laterally opposing sidewalls of the fin, the predetermined height corresponding to a height of the device portion; a device isolation layer on the substrate body and having a thickness up to a lower limit of the device portion; a gate electrode on the device isolation layer and further extending on the gate dielectric layer; an isolation element extending on the two laterally opposing sidewalls of the fin up to a lower limit of the gate dielectric layer, the isolation element being adapted to reduce any fringe capacitance between the gate electrode and regions of the fin extending below the device portion.
摘要:
A method for fabricating a field-effect transistor with a gate completely wrapping around a channel region is described. Ion implantation is used to make the oxide beneath the channel region of the transistor more etchable, thereby allowing the oxide to be removed below the channel region. Atomic layer deposition is used to form a gate dielectric and a metal gate entirely around the channel region once the oxide is removed below the channel region.
摘要:
A semiconductor device comprising a gate electrode formed on a gate dielectric layer formed on a semiconductor film. A pair of source/drain regions are formed adjacent the channel region on opposite sides of the gate electrode. The source and drain regions each comprise a semiconductor portion adjacent to and in contact with the semiconductor channel and a metal portion adjacent to and in contact with the semiconductor portion.
摘要:
A transistor may be formed of different layers of silicon germanium, a lowest layer having a graded germanium concentration and upper layers having constant germanium concentrations such that the lowest layer is of the form Si1-xGex. The highest layer may be of the form Si1-yGey on the PMOS side. A source and drain may be formed of epitaxial silicon germanium of the form Si1-zGez on the PMOS side. In some embodiments, x is greater than y and z is greater than x in the PMOS device. Thus, a PMOS device may be formed with both uniaxial compressive stress in the channel direction and in-plane biaxial compressive stress. This combination of stress may result in higher mobility and increased device performance in some cases.
摘要:
Described herein are a device utilizing a gate electrode material with a single work function for both the pMOS and nMOS transistors where the magnitude of the transistor threshold voltages is modified by semiconductor band engineering and article made thereby. Further described herein are methods of fabricating a device formed of complementary (pMOS and nMOS) transistors having semiconductor channel regions which have been band gap engineered to achieve a low threshold voltage.
摘要:
A method for fabricating a field-effect transistor with a gate completely wrapping around a channel region is described. Ion implantation is used to make the oxide beneath the channel region of the transistor more etchable, thereby allowing the oxide to be removed below the channel region. Atomic layer deposition is used to form a gate dielectric and a metal gate entirely around the channel region once the oxide is removed below the channel region.
摘要:
In a metal gate replacement process, strain may be selectively induced in the channels of NMOS and PMOS transistors. For example, a material having a higher coefficient of thermal expansion than the substrate may be used to form the gate electrodes of PMOS transistors. A material with a lower coefficient of thermal expansion than that of the substrate may be used to form the gate electrodes of NMOS transistors.
摘要:
Embodiments of the invention provide a device with a metal gate, a high-k gate dielectric layer and reduced oxidation of a substrate beneath the high-k gate dielectric layer. An oxygen barrier, or capping, layer on the high-k gate dielectric layer and metal gate may prevent such oxidation during processes such as spacer formation and annealing of ion implanted regions.
摘要:
A semiconductor device comprising a semiconductor body having a top surface and a first and second laterally opposite sidewalls as formed on an insulating substrate. A gate dielectric is formed on the top surface of the semiconductor body and on the first and second laterally opposite sidewalls of the semiconductor body. A gate electrode is then formed on the gate dielectric on the top surface of the semiconductor body and adjacent to the gate dielectric on the first and second laterally opposite sidewalls of the semiconductor body. The gate electrode comprises a metal film formed directly adjacent to the gate dielectric layer. A pair of source and drain regions are uniformed in the semiconductor body on opposite sides of the gate electrode.
摘要:
A method for making a semiconductor device is described. That method comprises forming a high-k gate dielectric layer that contacts a metal oxide layer. The metal oxide layer is generated by forming a metal layer, then oxidizing the metal layer.