摘要:
Laser output including at least one laser pulse having a wavelength greater than 1.1 μm and shorter than 5 μm (preferably at about 1.1 μm) and having a pulsewidth shorter than 100 ps (preferably shorter than 10 ps) permits low-k dielectric material, such as SRO or SiCOH, to be removed without damaging the substrate. An oscillator module in cooperation with an amplification module are used to generate the laser output.
摘要:
A method for stabilizing an output of a pulsed laser system includes a directly modulated laser diode by mitigating the effect of switching transients on the temporal shape of the outputted pulses. The method includes controlling a pulse shaping signal to define, over time, processing and conditioning periods. During the processing periods, the pulse shaping signal has an amplitude profile tailored to produce the desired temporal shape of the output. Each conditioning period either immediately precedes or follows a processing period. During a given processing period, the amplitude profile of the pulse shaping signal is tailored so that the drive current of the laser diode is lower than its maximum value during the corresponding processing period, and is of the same order of magnitude as the laser threshold current of the laser diode. In this manner, the stability of the output during the corresponding processing period is improved.
摘要:
UV laser cutting throughput through silicon and like materials is improved by dividing a long cut path (112) into short segments (122), from about 10 μm to 1 mm. The laser output (32) is scanned within a first short segment (122) for a predetermined number of passes before being moved to and scanned within a second short segment (122) for a predetermined number of passes. The bite size, segment size (126), and segment overlap (136) can be manipulated to minimize the amount and type of trench backfill. Real-time monitoring is employed to reduce rescanning portions of the cut path 112 (112) where the cut is already completed. Polarization direction of the laser output (32) is also correlated with the cutting direction to further enhance throughput. This technique can be employed to cut a variety of materials with a variety of different lasers and wavelengths. A multi-step process can optimize the laser processes for each individual layer.
摘要:
Embodiments of laser systems advantageously use pulsed optical fiber-based laser source (12) output, the temporal pulse profile of which may be programmed to assume a range of pulse shapes. Pulsed fiber lasers are subject to peak power limits to prevent an onset of undesirable nonlinear effects; therefore, the laser output power of these devices is subsequently amplified in a diode-pumped solid state photonic power amplifier (DPSS-PA) (16). The DPSS PA provides for amplification of the desirable low peak power output of a pulsed fiber master oscillator power amplifier (14) to much higher peak power levels and thereby also effectively increases the available energy per pulse at a specified pulse repetition frequency. The combination of the pulsed fiber master oscillator power amplifier and the diode-pumped solid state power amplifier is referred to as a tandem solid state photonic amplifier (10).
摘要:
Laser pulse shaping techniques produce tailored laser pulse spectral output. The laser pulses can be programmed to have desired pulse widths and pulse shapes (such as sub-nanosecond to 10 ns-20 ns pulse widths with 1 ns to several nanoseconds leading edge rise times). Preferred embodiments are implemented with one or more electro-optical modulators receiving drive signals that selectively change the amount of incident pulsed laser emission to form a tailored pulse output. Triggering the drive signal from the pulsed laser emission suppresses jitter associated with other stages of the link processing system and substantially removes jitter associated with pulsed laser emission build-up time.
摘要:
A method comprising providing a layer structure for a photovoltaic device, the layer structure comprising an electrode, a light absorber comprising a layer of chalcopyrite-type semiconductor material, such as copper indium gallium diselenide, disposed on the electrode and a transparent electrode disposed on the light absorber. The method also comprises delivering a spatially-shaped picosecond pulsed laser beam so as to remove material from a region of the transparent electrode so as to expose at least a portion of the light absorber.
摘要:
Embodiments of laser systems advantageously use pulsed optical fiber-based laser source (12) output, the temporal pulse profile of which may be programmed to assume a range of pulse shapes. Pulsed fiber lasers are subject to peak power limits to prevent an onset of undesirable nonlinear effects; therefore, the laser output power of these devices is subsequently amplified in a diode-pumped solid state photonic power amplifier (DPSS-PA) (16). The DPSS PA provides for amplification of the desirable low peak power output of a pulsed fiber master oscillator power amplifier (14) to much higher peak power levels and thereby also effectively increases the available energy per pulse at a specified pulse repetition frequency. The combination of the pulsed fiber master oscillator power amplifier and the diode-pumped solid state power amplifier is referred to as a tandem solid state photonic amplifier (10).
摘要:
Methods stabilize the output of a pulsed laser system using pulse shaping capabilities. In some embodiments, transient effects following a transition between a QCW regime and a pulse shaping regime are mitigated by ensuring that the average QCW optical power substantially corresponds to the average pulsed optical power outputted in a steady-state operation of the pulsed laser system in the pulse shaping regime. The QCW signal or the pulse shaping signal may be adapted for this purpose. In other embodiments, transient effects associated with non-process pulses emitted between series of consecutive process pulses are mitigated through the proper use of sequential pulse shaping.
摘要:
A method for stabilizing an output of a pulsed laser system includes a directly modulated laser diode by mitigating the effect of switching transients on the temporal shape of the outputted pulses. The method includes controlling a pulse shaping signal to define, over time, processing and conditioning periods. During the processing periods, the pulse shaping signal has an amplitude profile tailored to produce the desired temporal shape of the output. Each conditioning period either immediately precedes or follows a processing period. During a given processing period, the amplitude profile of the pulse shaping signal is tailored so that the drive current of the laser diode is lower than its maximum value during the corresponding processing period, and is of the same order of magnitude as the laser threshold current of the laser diode. In this manner, the stability of the output during the corresponding processing period is improved.
摘要:
A dry toner having Zapon Yellow 141 as a charge control agent, dispersed moderately in the toner. Zapon Yellow 141 is about 95% by weight Solvent Yellow 81 and about 5% by weight Solvent Orange 56.