Abstract:
A battery pack is provided. The battery pack includes first and second temperature sensors that are disposed in first and second interior spaces, respectively. The first temperature sensor generates a first signal indicative of a first temperature level of the battery cell. The second temperature sensor generates a second signal indicative of a second temperature level of the DC-DC voltage converter. The battery pack further includes a microprocessor that determines a first desired operational speed value of the electric fan based on the first temperature level, and a second desired operational speed value of the electric fan based on the second temperature level. The microprocessor selects the first desired operational speed value if the first desired operational speed value is greater than the second desired operational speed value.
Abstract:
A battery cell interconnect and voltage sensing assembly is provided. The assembly includes a plastic frame member having a first side and a second side, and first, second, third and fourth elongated apertures extending therethrough. The assembly further includes an elongated interconnect member coupled to the plastic frame member and extends past both the first and third apertures. The elongated interconnect member is coupled to both a first electrical terminal of a first battery cell extending through the first elongated aperture, and a first electrical terminal of a second battery cell extending through the third elongated aperture. The elongated interconnect member has a spade lug coupled to a wire harness assembly.
Abstract:
A battery module includes a first battery cell having a first housing and first and second electrical terminals. The first housing has first, second, third and fourth ends. The first and second electrical terminals extend outwardly from the third and fourth ends, respectively. A distance from the second end of the first housing to a second edge of the first electrical terminal is greater than a distance from the first end of the first housing to a first edge of the first electrical terminal A distance from the second end of the first housing to a second edge of the second electrical terminal is greater than a distance from the first end of the first housing to a first edge of the second electrical terminal. The battery module further includes a cooling fin disposed adjacent to the first battery cell, and a cooling plate coupled to the cooling fin.
Abstract:
A battery cell assembly having a first battery cell and a cooling fin is provided. The first battery cell has a first housing and first and second electrical terminals. The cooling fin is disposed against the first housing. The cooling fin has a substantially rectangular-shaped plate that extends along a longitudinal axis. The substantially rectangular-shaped plate has a plate portion with a first side and a second side. The first side has a first plurality of recessed regions and a first plurality of flat regions. Each recessed region of the first plurality of recessed regions is disposed between two flat regions of the first plurality of flat regions along the longitudinal axis. The first housing of the first battery cell is disposed against the first side such that the first housing contacts the first plurality of flat regions.
Abstract:
A battery module having first and second battery cells is provided. The first battery cell has a housing and first and second electrical terminals. The housing extends longitudinally along a first axis and vertically along a second axis. The housing has first, second, third and fourth ends. The first and second ends extend parallel to the first axis. The third and fourth ends extend parallel to the second axis. The first electrical terminal extends from the third end in a direction parallel to the first axis, and has first and second edges extending parallel to the first axis. The first edge is disposed closer to the first end than the second edge of the first electrical terminal. A distance from the second end of the housing to the second edge of the first electrical terminal is greater than a distance from the first end of the housing to the first edge of the first electrical terminal.
Abstract:
A battery module having first and second battery cells is provided. The first battery cell has a housing and first and second electrical terminals. The housing extends longitudinally along a first axis and vertically along a second axis. The housing has first, second, third and fourth ends. The first and second ends extend parallel to the first axis. The third and fourth ends extend parallel to the second axis. The first electrical terminal extends from the third end in a direction parallel to the first axis, and has first and second edges extending parallel to the first axis. The first edge is disposed closer to the first end than the second edge of the first electrical terminal. A distance from the second end of the housing to the second edge of the first electrical terminal is greater than a distance from the first end of the housing to the first edge of the first electrical terminal.
Abstract:
A terminal busbar includes a first busbar portion having a coupling plate, and a second busbar portion having a top plate portion, and a fusible member coupled to and between the coupling plate and the top plate portion. The fusible member has a first portion with a groove or an aperture disposed therein. The terminal busbar further includes an overmolded thermoplastic layer encapsulating the first portion of the fusible member and the groove or the aperture. A thickness of the overmolded thermoplastic layer both above and underneath the fusible member is greater than a thickness of the fusible member to prevent secondary arcing.
Abstract:
A battery module having first and second battery cells, a u-shaped frame member, a thermally conductive layer, a top cover plate, and first and second side cover plates is provided. The u-shaped frame member has a bottom wall and first and second side walls coupled to the bottom wall that extend upwardly from the bottom wall. The u-shaped frame member defines an interior space that holds the first and second battery cells therein. The first and second battery cells are disposed directly on the thermally conductive layer. The top cover plate is coupled to the first and second side walls to enclose a top open region of the u-shaped frame member. The first side cover plate that is coupled to the top cover plate and the bottom wall to enclose a first side open region of the u-shaped frame member.
Abstract:
A thermally conductive base member and a method of assembly are provided. The thermally conductive base member includes first and second metal base members, and a top plate. The first metal base member has a first bottom plate, first and second female coupling portions, and first and second rib portions. The second metal base member has a second bottom plate, a first male coupling portion, and first and second rib portions. The first male coupling portion is disposed in and coupled to the first female coupling portion. The top plate is coupled to a top surface of the first female coupling portion, a top surface of the second female coupling portion, and the first and second rib portions of the first metal base member such that a first flow channel is defined between the first and second rib portions of the first metal base member and the top plate.
Abstract:
A battery cell assembly having first, second, and third battery cells and a unitary wrapping sheet is provided. The unitary wrapping sheet is disposed on a top surface and a bottom surface of the first battery cell. The unitary wrapping sheet is further disposed on a top surface and a bottom surface of the second battery cell. The unitary wrapping sheet is further disposed on a top surface and a bottom surface of the third battery cell. The unitary wrapping sheet is further disposed on and encloses a portion of a combined periphery of the first, second, and third battery cells such that the top surface of the first battery cell, the top surface of the second battery cell, and the top surface of the third battery cell are held substantially parallel to one another.