摘要:
Membrane electrode assemblies are described that include an ion conductive membrane a catalyst adjacent to the major surfaces of the ion conductive membrane and a porous particle filled polymer membrane adjacent to the ion conductive membrane. The catalyst can be disposed on the major surfaces of the ion conductive membrane. Preferably, the catalyst is disposed in nanostructures. The polymer film serving as the electrode backing layer preferably is processed by heating the particle loaded porous film to a temperature within about 20 degrees of the melting point of the polymer to decrease the Gurley value and the electrical resistivity. The MEAs can be produced in a continuous roll process. The MEAs can be used to produce fuel cells, electrolyzers and electrochemical reactors.
摘要:
Membrane electrode assemblies are described that include an ion conductive membrane a catalyst adjacent to the major surfaces of the ion conductive membrane and a porous particle filled polymer membrane adjacent to the ion conductive membrane. The catalyst can be disposed on the major surfaces of the ion conductive membrane. Preferably, the catalyst is disposed in nanostructures. The polymer film serving as the electrode backing layer preferably is processed by heating the particle loaded porous film to a temperature within about 20 degrees of the melting point of the polymer to decrease the Gurley value and the electrical resistivity. The MEAs can be produced in a continuous roll process. The MEAs can be used to produce fuel cells, electrolyzers and electrochemical reactors.
摘要:
Membrane electrode assemblies are described that include an ion conductive membrane a catalyst adjacent to the major surfaces of the ion conductive membrane and a porous particle filled polymer membrane adjacent to the ion conductive membrane. The catalyst can be disposed on the major surfaces of the ion conductive membrane. Preferably, the catalyst is disposed in nanostructures. The polymer film serving as the electrode backing layer preferably is processed by heating the particle loaded porous film to a temperature within about 20 degrees of the melting point of the polymer to decrease the Gurley value and the electrical resistivity. The MEAs can be produced in a continuous roll process. The MEAs can be used to produce fuel cells, electrolyzers and electrochemical reactors.
摘要:
A method for partitioning an aqueous biological liquid sample into discrete microvolumes for detection and enumeration of microorganisms is described. The method involves distributing microvolumes of a sample to a plurality of hydrophilic liquid-retaining zones of a culture device, where each liquid-retaining zone is surrounded by a portion of a hydrophobic “land” area. Also disclosed are devices for carrying out these methods.
摘要:
Low energy surfaces based on nanostructured films exhibit advancing and receding contact angles for liquids such that (1) the difference between the advancing and receding contact angles approaches zero and (2) the advancing and receding contact angles approach 180.degree.. The low energy surface of the present invention comprises a nanostructured film coated with an organized molecular assembly (OMA). Advantageously, the chemical and wetting characteristics of the surface can be altered by changing the functionality of the OMA end groups exposed to the environment in contact with the surface of the nanostructured film.
摘要:
An exposure indicating apparatus for monitoring air flowing along a flow-through path extending from the external environment through an air purifying respirator cartridge and into a face mask. A processor housing is releasably attached to the flow-through path so that it can be removed allowing ambient air to enter the flow-through path at the attachment location. A reversible sensor with at least one property responsive to a concentration of a target species within an environment is in fluid communication with the flow-through path. A processing device in the processor housing generates a concentration signal as a function of the at least one property of the reversible sensor. An indicator provides an active indication in response to the concentration signal. A flow-through housing may form a portion of the flow-through path. The flow-through housing may be interposed between the air purifying cartridge and the face mask. The reversible sensor may be located in the processor housing, the air purifying respirator cartridge or the flow-through housing. The sensor is coupled to the processing device by a coupler.
摘要:
A nanostructured composite film comprising a plurality of nanostructured elements, wherein the nanostructured elements are either two-component sub-microscopic structures comprised of whiskers conformally coated with a conducting, preferentially catalytically active material or one component sub-microscopic structures comprised of a conducting preferentially catalytically active material, such that the nanostructured elements are embedded in an encapsulant, wherein the encapsulant can be a solid electrolyte. The composite film can be used as an electrode membrane in an electrochemical cell or sensor.
摘要:
This invention provides a composite article having discrete microstructures partially encapsulated within a layer. A method of making the same is also provided. The article of the present invention is useful for visible radiation absorbing devices, such as, for example, selective solar absorbers, flat plate solar collectors, solar absorption panels, and solar cells.
摘要:
Fabrication methods for making a gas diffusion layer incorporating a gasket (GIG) fuel cell subassemblies via roll-to-roll processes are described. A material processable by one or both of heat and pressure having spaced apart apertures is transported to a bonding station. A first gasket layer having gas diffusion layers arranged in relation to spaced apart apertures of a first gasket layer is transported to the bonding station. The heat/pressure processable material is aligned with the first gasket layer and the gas diffusion layers. At the bonding station, the heat/pressure processable material is bonded to the first gasket layer and the gas diffusion layers. After bonding, the heat/pressure processable material forms a second gasket layer that attaches the gas diffusion layers to the first gasket layer.
摘要:
Components that include catalyst layers used in membrane electrode assemblies (MEAs), and methods of making such components are described. The catalyst layers yield more uniform current distributions across the active area of the MEA during operation. The catalyst layers may have a uniform catalyst activity profile of a less active catalyst to achieve more uniform current density over the MEA active area. The catalyst layers may have a variable activity profile, such as an activity profile with a varying slope, to compensate for the inherent nonlinearities of catalyst utilization during operation of an electrochemical fuel cell. Desired variable catalyst activity profiles may be achieved, for example, by varying the catalyst loading across the MEA from inlet to outlet ports or by varying the surface area of the catalyst loading or by varying the surface area of the catalyst support elements.