Abstract:
A multi-chip module (MCM) includes chip sub-modules that are fabricated as self-contained testable entities. The chip sub-modules plug into respective sockets in a frame of the MCM. Each chip sub-module may be tested before being plugged into the MCM. A chip sub-module may include an IC chip, such as a processor, mounted to an sub-module organic substrate that provides interconnects to the chip. The frame into which each chip sub-module plugs sits on a mini-card organic substrate that interconnects the chip sub-modules together. The MCM may include a downstop between the mini-card organic substrate and a system board to limit or prevent solder creep of solder connections between the mini-card organic substrate and the system board.
Abstract:
An enhanced contact construction and loading support mechanism for plastic land grid array (PLGA) modules. A plurality of inverted hybrid land grid array (LGA) contacts are each respectively captured in and extend at least partially through one of a plurality of holes of an inverted hybrid LGA interposer. The inverted hybrid LGA contacts are affixed to a plurality of metal pads on a PLGA module carrier. Preferably, the inverted hybrid LGA contacts are affixed simultaneously using surface-mount technology (SMT) and have a metallurgy construction (e.g., beryllium-copper springs coated with nickel and hard gold) that provides enhanced wear and corrosion resistance. Each of the inverted hybrid LGA contacts is configured to make mechanical/pressure contact with a metal contact on another substrate, such as a printed wiring board (PWB). The inverted hybrid LGA interposer supports the PLGA module carrier and, in addition, a stiffener frame (with or without a heat sink) may be provided to reinforce the PLGA module carrier.
Abstract:
A heat transfer apparatus comprises a load frame having load springs and an open region that exposes an electronic component. The load frame is mounted to a printed circuit board on which the electronic component is mounted. A heat sink assembly is disposed on the load frame and has a main body in thermal contact with the electronic component through a thermally conductive material. The heat sink assembly has load arms for engaging the load springs. A load plate extends between the load arms and has an actuation element operative to displace the main body relative to the load plate and thereby resiliently deform the load springs and produce a load force that compresses the thermally conductive material to achieve a desired thermal interface gap between the main body and the electronic component. Non-influencing fasteners secure the heat sink to the load frame and maintain the desired thermal interface gap.
Abstract:
A method of making and a high performance reworkable heatsink and packaging structure with solder release layer are provided. A heatsink structure includes a heatsink base frame. A selected one of a heatpipe or a vapor chamber, and a plurality of parallel fins are soldered to the heatsink base frame. A solder release layer is applied to an outer surface of the heatsink base frame. The solder release layer has a lower melting temperature range than each solder used for securing the selected one of the heatpipe or the vapor chamber, and the plurality of parallel fins to the heatsink base frame. After the solder release layer is applied, the heatpipe or the vapor chamber is filled with a selected heat transfer media.
Abstract:
A method and structures are provided for implementing customizable dielectric printed circuit card traces. A void is defined near selected signal traces. The void is then filled with a dielectric material having a predefined dielectric property. The dielectric material is selected to alter at least one predefined electrical property of the selected signal traces, such as, coupling, propagation delay and attenuation. In one embodiment, an outer layer of a printed circuit card includes a plurality of signal traces and a mating circuit card layer including a plurality of matching signal traces is attached to the outer layer of the printed circuit card to create a cavity near selected signal traces. The cavity is filled with the selected dielectric material. In another embodiment, dielectric material is selectively removed near signal traces on an outer layer of the printed circuit card to define a void near selected signal traces.
Abstract:
A method and structures are provided for implementing customizable dielectric printed circuit card traces. A void is defined near selected signal traces. The void is then filled with a dielectric material having a predefined dielectric property. The dielectric material is selected to alter at least one predefined electrical property of the selected signal traces, such as, coupling, propagation delay and attenuation. In one embodiment, an outer layer of a printed circuit card includes a plurality of signal traces and a mating circuit card layer including a plurality of matching signal traces is attached to the outer layer of the printed circuit card to create a cavity near selected signal traces. The cavity is filled with the selected dielectric material. In another embodiment, dielectric material is selectively removed near signal traces on an outer layer of the printed circuit card to define a void near selected signal traces.
Abstract:
An apparatus, program product and method for processing circuit boards containing area array surface treated bonding sites, such as noble metal terminal pads of a Land Grid Array (LGA) assembly. The circuit board includes a plurality of apertures patterned about the bonding site for form a footprint. A protective cover shaped to conform to the footprint includes posts registered to removably fit into the apertures. The protective cover remains overlaid on the circuit board during fabrication processes such as solder screen printing, rework, and washing, and then removed. Thus, contamination from the fabrication processes is avoided, as well as eliminating possible sources of contamination from use of adhesive tape for protection.
Abstract:
A method of forming a bond structure for use with integrated circuits and semiconductor electronics and carrier assemblies is disclosed. Metallurgical paste is screen printed through a stencil and the stencil is left in place during the reflow process. The melting point of the bond structure and the metallurgical paste is lower than the melting point of interconnects on the electronic components and less than the decomposition temperature of the carrier assemblies to which the electronic components are bonded.
Abstract:
The present invention may be characterized as an improved integrated circuit die testing system which includes a number of components which cooperate together. An integrated circuit carrier is provided for holding the integrated circuit die. Attached to the integrated circuit carrier is a chip site. Proximate to this chip site exists a plurality of contact pads. These contact pads are electrically coupled to a plurality of test points. Also provided is an integrated circuit die. Finally, a pattern of electrically conductive paste is provided. This electrically conductive paste electrically couples the integrated circuit die and the contact pads thereby allowing the integrated circuit die to be tested from the test points.
Abstract:
A package for containing a high speed electronic assembly has a small physical size, shielding, pluggability, and is capable of operating at multigigabit transmission rates. The package includes a module and a cover which covers at least the top of the module. An optical assembly and a circuit packaging are inserted into the module. The package, with an appropriate cover, can be removed and inserted without disturbing other packages secured on the board. The circuit packaging is electrically connected to the board through bump connectors, while the circuit packaging itself supplies a normal force for insuring the bump connectors are in contact with the board. The package is attached to the board using an attachment member which is separate from the bump connectors. The bump connectors facilitate high speed transmission. Alignment pins may be used to improve mechanical stability, provide feedback indicative of proper insertion, and to prevent bump connectors from contacting the board until the module is properly positioned. Electromagnetic interference shielding may be provided in the cover. The cover and various components of the module serve as heat sinks for the module. The cover, the pattern of the bump connectors and the positioning of the alignment pins may be selected/altered by an end user without affecting the construction of the module.