摘要:
If it is determined that excess power is generated based on overcharge information of a power storage device, a controller starts an operation of consuming the excess power by an excessive power consuming circuit. The controller counts elapsed time from the time point when the power consuming operation started, and if the counted elapsed time exceeds a minimum on-time set in advance, switches the excessive power consuming circuit from active to inactive state. The minimum on-time is set based on a pattern that is expected to cause generation of excessive regenerative power from an AC electric motor because of abrupt change in running status of an electric powered vehicle mounting a motor drive system.
摘要:
An object of the invention is to limit a current flowing in a booster converter circuit for a vehicle within a predetermined range. In the booster converter circuit for a vehicle including a battery that outputs a DC voltage; a switching unit having a switching element to be controlled to ON or OFF; an inductive element unit being connected between the battery and the switching unit and including an inductive element; a switching control unit that controls the switching element, an output voltage measuring unit that measures an output voltage of the booster converter circuit for a vehicle is provided, and the duty ratio determining device obtains a control duty ratio with respect to the switching element on the basis of a measured output voltage value so that a value of a converter current flowing through a path from the battery to the switching unit falls within a predetermined range.
摘要:
A voltage transformer, which is placed between a DC power source (B) and a motor (M1), includes: a voltage sensor (10) and an electric current sensor (11), which senses input and output of electric power to and from the DC power source (B); a buck-boost converter (12) having power control elements, which is placed in a path connecting between power lines (PL1) and (PL2) that establish the connection to the DC power source (B) and the connection to the motor (M1), respectively; and a controller (30) for controlling the buck-boost converter (12). The controller (30) monitors the change in the regenerated power that is supplied to the DC power source (B), based on the outputs from the voltage sensor (10) and the electric current sensor (11), and, if the amount of change in the regenerated power is greater than a predetermined amount, the controller (30) changes the operation mode of the buck-boost converter (12) from a rapid operation mode to a slow operation mode.
摘要:
A voltage command value of a converter is set by executing the step of determining a candidate voltage of a system voltage VH as a converter output voltage in a voltage range from the minimum necessary voltage corresponding to induction voltage of a motor generator and a maximum output voltage of the converter; the step of estimating power loss at the battery, converter, inverter and motor generator, at each candidate voltage, and calculating total sum of estimated power loss of the overall system; and the step of setting the voltage command value VH# based on the candidate voltage that minimizes the total sum of estimated power losses among the candidate voltages.
摘要:
A connecting structure in which the electric cable having an insulated coating and the electrically conductive member with non-insulated coating are connected through a connecting terminal having a junction support member by applying an electric current, heating and applying a pressure; and the electric cables having an insulated coating and are connected mutually to one another through a connecting terminal having an electrically conductive member with non-insulated coating and a junction support member by applying an electric current, heating and applying a pressure, and a connecting method in which those connections are established by applying an electric current, applying a heat and applying a pressure, and a rotating electric machinery having that connecting structure and an alternating current generator using this machinery.
摘要:
The power converter includes a first operation mode in which each of switching elements is controlled on or off independently so as to perform a power conversion between a load and both a first DC power source and a second DC power source and a second operation mode in which every two of the switching elements are controlled on or off concurrently so as to perform the power conversion between the load and the first DC power source or the second DC power source. A switching speed at which when each of the switching elements is turned on or turned off is controlled in accordance with the operation mode. Specifically, the switching speed in the second operation mode is higher than the switching speed in the first operation mode.
摘要:
A carrier frequency setting unit sets a carrier frequency based on a torque command and a motor rotation number of a motor generator. A PWM signal producing unit produces phase modulated waves corresponding to respective phase voltage commands, and produces respective phase PWM signals corresponding to a relationship in magnitude between the respective phase modulated waves and a carrier having the carrier frequency. A PWM center control unit produces a PWM center correction value for variably controlling the PWM center when the carrier frequency is lower than a predetermined frequency, and provides the same to the PWM signal producing unit.
摘要:
A control apparatus for a voltage conversion apparatus includes: duty command signal generation means for generating a duty command signal corresponding to a duty ratio of switching elements carrier signal generation means for generating carrier signals corresponding to respective switching frequencies of the switching elements; switching control signal generation means for generating respective switching control signals of switching ON and OFF states of the switching elements, by comparing the duty command signal with the carrier signals; one arm driving control means for implementing one arm driving by alternatively turning on the first and second switching elements; and phase inverting means for bringing phases of portions, of the carrier signals, corresponding to switching at least right after arm switching, into a state where the phases are shifted from each other by 180 degrees between the first and second switching elements, at the time of the arm switching.
摘要:
In the hybrid vehicle, a boost converter is controlled to make a post-boost voltage or a voltage on the side of an inverter become a target post-boost voltage corresponding to a target operation point of a motor in accordance with a target post-boost voltage setting map that divides an operation region of the motor into a non-boost region and a boost region when a operation point of the motor is included in the boost region. The target post-boost voltage setting map is prepared so that the non-boost region includes a region in which a loss produced by driving the motor when not boosting the post-boost voltages becomes smaller than the loss produced when boosting the post-boost voltage and the boost region includes a region in which the loss produced when boosting the post-boost voltage becomes smaller than the loss produced when not boosting the post-boost voltage.
摘要:
It is determined that a periodic zero current stagnation state is reached to correct a voltage command of a smoothing capacitor downward by a predetermined voltage when a state where a current (reactor current) flowing through a coil in a dead time when switching elements are both off immediately after the switching element (upper arm) is turned off from on stagnates at a value of 0 occurs at switching periods of the switching elements. This can prevent a voltage of the smoothing capacitor from becoming unexpectedly higher than the voltage command in the current stagnation state, prevent the smoothing capacitor from being damaged by an overvoltage and prevent excessive torque from being output from motors.