Abstract:
Radio frequency (RF) filter structures and related methods and RF front-end circuitry are disclosed. In one embodiment, an RF filter structure includes a first terminal and a first tunable RF filter path defined between the first terminal and a second terminal. The first tunable RF filter path is tunable to provide impedance matching between the first terminal and the second terminal at a first frequency. The first frequency may be provided within a first frequency band. Additionally, the RF filter structure includes a second tunable RF filter path defined between the first terminal and the second terminal. The second tunable RF filter path is tunable to provide impedance matching between the first terminal and the second terminal at a second frequency. The second frequency may be within a second frequency band. In this manner, the RF filter structure is configured to provide impedance tuning for multiple impedance bands simultaneously.
Abstract:
RF communications circuitry, which includes a first RF filter structure and control circuitry, is disclosed. The first RF filter structure includes a pair of weakly coupled resonators and a first tunable RF filter. The control circuitry provides a first filter control signal. The first tunable RF filter receives and filters an upstream RF signal to provide a first filtered RF signal, such that a center frequency of the first tunable RF filter is based on the first filter control signal.
Abstract:
Disclosed is an RF front-end with improved insertion loss having at least a first resonator with a first port and a second port and at least a second resonator having a third port and a fourth port, wherein the first resonator and the second resonator are magnetically coupled by no more than 5%. Also included is at least one coupling structure coupled between the second port of the first resonator and the third port of the second resonator, wherein the coupling structure has a coupling control input for varying a coupling coefficient between the first resonator and the second resonator such that an RF signal transfer between the first port of the first resonator and the fourth port of the second resonator is controllably variable between 5% and 95%.
Abstract:
An apparatus, which includes a first electronic device, a first nonlinear capacitance compensation circuit, and a capacitance compensation control circuit, is disclosed. The first electronic device has a first nonlinear capacitance and is coupled to the first nonlinear capacitance compensation circuit, which has a first compensation capacitance and receives a first compensation control signal. The capacitance compensation control circuit adjusts the first compensation capacitance using the first compensation control signal to at least partially linearize the first nonlinear capacitance.
Abstract:
The present disclosure relates to a slow-wave transmission line for transmitting slow-wave signals with reduced loss. In this regard, the slow-wave transmission line is formed in a multi-layer substrate and includes an undulating signal path. The undulating signal path includes at least two loop structures, wherein each loop structure includes at least two via structures connected by at least one intra-loop trace. The undulating signal path further includes at least one inter-loop trace connecting the at least two loop structures. Additionally, the slow-wave transmission line includes a first ground structure disposed along the undulating signal path. In this manner, a loop inductance is formed by each of the at least two loop structures, while a first distributed capacitance is formed between the undulating signal path and the ground structure.
Abstract:
This disclosure relates generally to radio frequency (RF) amplification devices and methods of operating the same. In one embodiment, an RF amplification device includes an RF amplification circuit and a stabilizing transformer network. The RF amplification circuit defines an RF signal path and is configured to amplify an RF signal propagating in the RF signal path. The stabilizing transformer network is operably associated with the RF signal path defined by the RF amplification circuit. Furthermore, the stabilizing transformer network is configured to reduce parasitic coupling along the RF signal path of the RF amplification circuit as the RF signal propagates in the RF signal path. In this manner, the stabilizing transformer network allows for inexpensive components to be used to reduce parasitic coupling while allowing for smaller distances along the RF signal path.
Abstract:
RF communications circuitry includes a first RF filter structure, which is disclosed. The first RF filter structure includes a first passive group of RF resonators and active loss-reduction circuitry. The active loss-reduction circuitry is coupled to the first passive group of RF resonators. The active loss-reduction circuitry uses self-limiting positive feedback to reduce signal loss in the first passive group of RF resonators. Additionally, the active loss-reduction circuitry limits the self-limiting positive feedback to prevent self-oscillation in the active loss-reduction circuitry.
Abstract:
RF communications circuitry, which includes a first RF filter structure and RF detection circuitry, is disclosed. The first RF filter structure includes a first group of RF resonators, which include a first pair of weakly coupled RF resonators coupled to a signal path of a first RF signal. One of the first group of RF resonators provides a first sampled RF signal. The RF detection circuitry detects the first sampled RF signal to provide a first detected signal. The first RF filter structure adjusts a first filtering characteristic of the first RF filter structure based on the first detected signal.
Abstract:
RF communications circuitry, which includes a first tunable RF filter and a second tunable RF filter, is disclosed. The first tunable RF filter is coupled to the second tunable RF filter. The RF communications circuitry operates in one of a first operating mode and a second operating mode. During the first operating mode, the second tunable RF filter receives and filters an upstream RF signal to provide a filtered RF signal. Further, during the first operating mode, the first tunable RF filter augments a frequency response of the second tunable RF filter.
Abstract:
Embodiments of radio frequency (RF) front-end circuitry are disclosed where the RF front-end circuitry includes a tunable RF filter structure and a calibration circuit. The tunable RF filter structure includes (at least) a pair of weakly coupled resonators and defines a transfer function with a passband. The calibration circuit is configured to shape the passband so that the passband defines a center frequency. Additionally, the calibration circuit is configured to detect a phase difference at the target center frequency between the pair of weakly coupled resonators and adjust the phase difference of the pair of weakly coupled resonators at the target center frequency so as to reduce a frequency displacement between the center frequency of the passband and the target center frequency. In this manner, the calibration circuit calibrates the tunable RF filter structure to correct for errors in the center frequency of the passband due to component manufacturing variations.