Abstract:
Semiconductor devices with high-K/metal gates are formed with spacers that are substantially resistant to subsequent etching to remove an overlying spacer, thereby avoiding replacement and increasing manufacturing throughput. Embodiments include forming a high-K/metal gate, having an upper surface and side surfaces, over a substrate, e.g., a SOI substrate, and sequentially forming, on the side surfaces of the high-K/metal gate, a first spacer of a non-oxide material, a second spacer, of a material different from that of the first spacer, and a third spacer, of a material different from that of the second spacer. After formation of source and drain regions, e.g., epitaxially grown silicon-germanium, the third spacer is etched with an etchant, such as hot phosphoric acid, to which the second spacer is substantially resistant, thereby avoiding replacement.
Abstract:
Stress enhanced MOS transistors are provided. A semiconductor device is provided that comprises a semiconductor-on-insulator structure, a gate insulator layer, a source region, a drain region and a conductive gate overlying the gate insulator layer. The semiconductor-on-insulator structure comprises: a substrate, a semiconductor layer, and an insulating layer disposed between the substrate and the semiconductor layer. The semiconductor layer has a first surface, a second surface and a first region. The gate insulator layer overlies the first region, the conductive gate overlies the gate insulator layer, and the source region and the drain region overlie the first surface and comprise a strain-inducing epitaxial layer
Abstract:
A method that includes forming a gate of a semiconductor device on a substrate and forming a recess for an embedded silicon-straining material in source and drain regions for the gate. In this method, a proximity value, which is defined as a distance between the gate and a closest edge of the recess, is controlled by controlling formation of an oxide layer provided beneath the gate. The method can also include feedforward control of process steps in the formation of the recess based upon values measured during the formation of the recess. The method can also apply feedback control to adjust a subsequent recess formation process performed on a subsequent semiconductor device based on the comparison between a measured proximity value and a target proximity value to decrease a difference between a proximity value of the subsequent semiconductor device and the target proximity value.
Abstract:
Methods for protecting gate stacks during fabrication of semiconductor devices and semiconductor devices fabricated from such methods are provided. In an embodiment, a method for fabricating a semiconductor device comprises forming a gate stack comprising a first gate stack-forming layer overlying a semiconductor substrate and forming first sidewall spacers about sidewalls of the gate stack. After the step of forming the first sidewall spacers, a portion of the first gate stack-forming layer is exposed. The exposed portion is anisotropically etched using the gate stack and the first sidewall spacers as an etch mask. Second sidewall spacers are formed adjacent the first sidewall spacers after the step of anisotropically etching.
Abstract:
Methods are provided for calibrating a process for growing an epitaxial silicon-comprising film and for growing an epitaxial silicon-comprising film. One method comprises epitaxially growing a first silicon-comprising film on a first silicon substrate that has an adjacent non-crystalline-silicon structure that extends from said first silicon substrate. The step of epitaxially growing uses hydrochloric acid provided at a first hydrochloric acid flow rate for a first time period. A morphology of the first film relevant to the adjacent non-crystalline-silicon structure is analyzed and a thickness of the first film is measured. The first flow rate is adjusted to a second flow rate based on the morphology of the first film. The first time period is adjusted to a second time period based on the second flow rate and the thickness. A second silicon-comprising film on a second silicon substrate is epitaxially grown for the second time period using the second flow rate.
Abstract:
A low energy surface is formed by a high temperature anneal of the surfaces of trenches on each side of a gate stack. The material of the semiconductor layer reflows during the high temperature anneal such that the low energy surface is a crystallographic surface that is at a non-orthogonal angle with the surface normal of the semiconductor layer. A lattice mismatched semiconductor material is selectively grown on the semiconductor layer to fill the trenches, thereby forming embedded lattice mismatched semiconductor material portions in source and drain regions of a transistor. The embedded lattice mismatched semiconductor material portions can be in-situ doped without increasing punch-through. Alternately, a combination of intrinsic selective epitaxy and ion implantation can be employed to form deep source and drain regions.
Abstract:
A method of fabricating a semiconductor device with back side conductive plugs is provided here. The method begins by forming a gate structure overlying a semiconductor-on-insulator (SOI) substrate. The SOI substrate has a support layer, an insulating layer overlying the support layer, an active semiconductor region overlying the insulating layer, and an isolation region outboard of the active semiconductor region. A first section of the gate structure is formed overlying the isolation region and a second section of the gate structure is formed overlying the active semiconductor region. The method continues by forming source/drain regions in the active semiconductor region, and thereafter removing the support layer from the SOI substrate. Next, the method forms conductive plugs for the gate structure and the source/drain regions, where each of the conductive plugs passes through the insulating layer.
Abstract:
A low energy surface is formed by a high temperature anneal of the surfaces of trenches on each side of a gate stack. The material of the semiconductor layer reflows during the high temperature anneal such that the low energy surface is a crystallographic surface that is at a non-orthogonal angle with the surface normal of the semiconductor layer. A lattice mismatched semiconductor material is selectively grown on the semiconductor layer to fill the trenches, thereby forming embedded lattice mismatched semiconductor material portions in source and drain regions of a transistor. The embedded lattice mismatched semiconductor material portions can be in-situ doped without increasing punch-through. Alternately, a combination of intrinsic selective epitaxy and ion implantation can be employed to form deep source and drain regions.
Abstract:
Improved semiconductor devices comprising metal gate electrodes are formed with reduced performance variability by reducing the initial high dopant concentration at the top portion of the silicon layer overlying the metal layer. Embodiments include reducing the dopant concentration in the upper portion of the silicon layer, by implanting a counter-dopant into the upper portion of the silicon layer, removing the high dopant concentration portion and replacing it with undoped or lightly doped silicon, and applying a gettering agent to the upper surface of the silicon layer to form a thin layer with the gettered dopant, which layer can be removed or retained.
Abstract:
Methods for forming a semiconductor device comprising a silicon-comprising substrate are provided. One exemplary method comprises depositing a polysilicon layer overlying the silicon-comprising substrate, amorphizing the polysilicon layer, etching the amorphized polysilicon layer to form a gate electrode, etching recesses into the substrate using the gate electrode as an etch mask, depositing a stress-inducing layer overlying the gate electrode, annealing the silicon-comprising substrate to recrystallize the gate electrode, removing the stress-inducing layer, and epitaxially growing impurity-doped, silicon-comprising regions in the recesses.