Abstract:
An antireflective coating composition, including a polymer, a photoacid generator having a crosslinkable group, a compound capable of crosslinking the polymer and the photoacid generator, a thermal acid generator, and an organic solvent.
Abstract:
A polymer comprising a first repeating unit derived from a monomer comprising a hydroxy-aryl group; a second repeating unit derived from a monomer comprising a hydroxy-aryl group protected with an acetal or ketal group; a third repeating unit derived from a (meth)acrylate monomer comprising a cycloaliphatic group; and a fourth repeating unit derived from a monomer comprising an acid-sensitive group, wherein the first, the second, the third, and the fourth repeating units are different from each other.
Abstract:
A photoacid generator compound having formula (I): wherein, in formula (I), groups and variables are the same as described in the specification.
Abstract:
A resist underlayer composition including a polyarylene ether, an additive polymer that is different from the polyarylene ether, and a solvent, wherein the additive polymer includes an aromatic or heteroaromatic group having at least one protected or free functional group selected from hydroxy, thiol, and amino.
Abstract:
Methods of forming an electronic device comprise: (a) providing a semiconductor substrate comprising a porous feature on a surface thereof; (b) applying a composition over the porous feature, wherein the composition comprises a polymer and a solvent, wherein the polymer comprises a repeat unit of the following general formula (I): wherein: Ar1, Ar2, Ar3 and Ar4 independently represent an optionally substituted divalent aromatic group; X1 and X2 independently represent a single bond, —O—, —C(O)—, —C(O)O—, —OC(O)—, —C(O)NR1—, —NR2C(O)—, —S—, —S(O)—, —SO2— or an optionally substituted C1-20 divalent hydrocarbon group, wherein R1 and R2 independently represent H or a C1-20 hydrocarbyl group; m is 0 or 1; n is 0 or 1; and o is 0 or 1; and (c) heating the composition; wherein the polymer is disposed in pores of the porous feature. The methods find particular applicability in the manufacture of semiconductor devices for forming low-k and ultra-low-k dielectric materials.
Abstract:
Methods of forming an electronic device comprise: (a) providing a semiconductor substrate comprising a porous feature on a surface thereof; (b) applying a composition over the porous feature, wherein the composition comprises a polymer and a solvent, wherein the polymer comprises a repeat unit of the following general formula (I): wherein: Ar1, Ar2, Ar3 and Ar4 independently represent an optionally substituted divalent aromatic group; X1 and X2 independently represent a single bond, —O—, —C(O)—, —C(O)O—, —OC(O)—, —C(O)NR1—, —NR2C(O)—, —S—, —S(O)—, —SO2— or an optionally substituted C1-20 divalent hydrocarbon group, wherein R1 and R2 independently represent H or a C1-20 hydrocarbyl group; m is 0 or 1; n is 0 or 1; and o is 0 or 1; and (c) heating the composition; wherein the polymer is disposed in pores of the porous feature. The methods find particular applicability in the manufacture of semiconductor devices for forming low-k and ultra-low-k dielectric materials.
Abstract:
A composition comprising a polymer and a solvent, wherein the polymer comprises: a repeat unit of the following general formula (I): wherein: Ar1, Ar2, Ar3 and Ar4 independently represent an optionally substituted divalent aromatic group; X1 and X2 independently represent a single bond, —O—, —C(O)—, —C(O)O—, —OC(O)—, —C(O)NR1—, —NR2C(O)—, —S—, —S(O)—, —SO2— or an optionally substituted C1-20 divalent hydrocarbon group, wherein R1 and R2 independently represent H or a C1-20 hydrocarbyl group; m is 0 or 1; n is 0 or 1; and o is 0 or 1; and an endcapping group that is free of polymerizable vinyl groups and hydroxyl groups. The compositions find particular applicability in the manufacture of semiconductor devices for forming low-k and ultra-low-k dielectric materials.