Abstract:
A stacked structure may include a first material layer, a two-dimensional material layer on the first material layer, and a second material layer on the two-dimensional material layer. The two-dimensional material layer may include a plurality of holes that each expose a portion of the first material layer. The second material layer may be coupled to the first material layer through the plurality of holes.
Abstract:
An interconnect structure may include a graphene-metal barrier on a substrate and a conductive layer on the graphene-metal barrier. The graphene-metal barrier may include a plurality of graphene layers and metal particles on grain boundaries of each graphene layer between the plurality of graphene layers. The metal particles may be formed at a ratio of 1 atom % to 10 atom % with respect to carbon of the plurality of graphene layers.
Abstract:
Disclosed are an interconnect structure, an electronic device including the same, and a method of manufacturing the interconnect structure. The interconnect structure includes a dielectric layer; a conductive interconnect on the dielectric layer; and a graphene cap layer on the conductive interconnect. The graphene cap layer contains graphene quantum dots, has a carbon content of 80 at % or more, and has an oxygen content of 15 at % or less.
Abstract:
A semiconductor device is provided. The semiconductor device includes a metal layer, a semiconductor layer in electrical contact with the metal layer, a two-dimensional (2D) material layer disposed between the metal layer and the semiconductor layer and having a 2D crystal structure, and a metal compound layer disposed between the 2D material layer and the semiconductor layer.
Abstract:
Provided is a method of selectively growing graphene. The method includes forming an ion implantation region and an ion non-implantation region by implanting ions locally into a substrate; and selectively growing graphene in the ion implantation region or the ion non-implantation region.
Abstract:
Provided are electronic devices and methods of manufacturing the same. An electronic device may include a substrate, a gate electrode on the substrate, a ferroelectric layer between the substrate and the gate electrode, and a carbon layer between the substrate and the ferroelectric layer. The carbon layer may have an sp2 bonding structure.
Abstract:
Provided are nanocrystalline graphene and a method of forming the nanocrystalline graphene through a plasma enhanced chemical vapor deposition process. The nanocrystalline graphene may have a ratio of carbon having an sp2 bonding structure to total carbon within the range of about 50% to 99%. In addition, the nanocrystalline graphene may include crystals having a size of about 0.5 nm to about 100 nm.
Abstract:
A multilayer structure includes a first material layer, a second material layer, and a diffusion barrier layer. The second material layer is connected to the first material layer. The second material layer is spaced apart from the first material layer. The diffusion barrier layer is between the first material layer and the second material layer. The diffusion barrier layer may include a two-dimensional (2D) material. The 2D material may be a non-graphene-based material, such as a metal chalcogenide-based material having a 2D crystal structure. The first material layer may be a semiconductor or an insulator, and the second material layer may be a conductor. At least a part of the multilayer structure may constitute an interconnection for an electronic device.
Abstract:
A 2D material hard mask includes hydrogen, oxygen, and a 2D material layer having a layered crystalline structure. The 2D material layer may be a material layer including one of a carbon structure (for example, a graphene sheet) and a non-carbon structure.
Abstract:
A semiconductor device is provided. The semiconductor device includes a metal layer, a semiconductor layer in electrical contact with the metal layer, a two-dimensional (2D) material layer disposed between the metal layer and the semiconductor layer and having a 2D crystal structure, and a metal compound layer disposed between the 2D material layer and the semiconductor layer.