Abstract:
A transistor structure may include a semiconductor structure may include a substrate; a source electrode and a drain electrode spaced apart from each other on the substrate; a channel layer connected to the source electrode and the drain electrode; a gate insulating layer on the channel layer; and a gate electrode on the gate insulating layer. The channel layer may include a two-dimensional semiconductor material. The source electrode and the drain electrode each may include a graphene layer and a metal layer. The graphene layer may be formed by as-growing on the substrate. The graphene layer and the metal layer may be side by side in a vertical direction with respect to a surface of the substrate.
Abstract:
A vertical nonvolatile memory device may include a channel layer extending in a first direction; a plurality of gate electrodes and a plurality of spacers each extending in a second direction crossing the first direction, the plurality of gate electrodes and the plurality of spacers being alternately arranged with each other in the first direction; and a gate insulating layer extending in the first direction between the channel layer and the plurality of gate electrodes. Each of the plurality of gate electrodes may include a metal-doped graphene.
Abstract:
Provided is a method of selectively growing graphene. The method includes forming an ion implantation region and an ion non-implantation region by implanting ions locally into a substrate; and selectively growing graphene in the ion implantation region or the ion non-implantation region.
Abstract:
Provided are nanocrystalline graphene and a method of forming the nanocrystalline graphene through a plasma enhanced chemical vapor deposition process. The nanocrystalline graphene may have a ratio of carbon having an sp2 bonding structure to total carbon within the range of about 50% to 99%. In addition, the nanocrystalline graphene may include crystals having a size of about 0.5 nm to about 100 nm.
Abstract:
A multilayer structure includes a first material layer, a second material layer, and a diffusion barrier layer. The second material layer is connected to the first material layer. The second material layer is spaced apart from the first material layer. The diffusion barrier layer is between the first material layer and the second material layer. The diffusion barrier layer may include a two-dimensional (2D) material. The 2D material may be a non-graphene-based material, such as a metal chalcogenide-based material having a 2D crystal structure. The first material layer may be a semiconductor or an insulator, and the second material layer may be a conductor. At least a part of the multilayer structure may constitute an interconnection for an electronic device.
Abstract:
A method and an apparatus for controlling an air conditioner are provided. The method includes sensing, by an air conditioner control apparatus, a user action requesting a temperature control, checking whether one of a common control mode in which a setting temperature is controlled at a first temperature control interval and a minute control mode in which the setting temperature is controlled at a second temperature control interval, which is less than the first temperature control interval, is selected in response to the sensed user action, calculating the setting temperature based on the user action and a result of the checking, and transmitting the calculated setting temperature to the air conditioner.
Abstract:
Provided is a thin film structure including a substrate, a metal layer on the substrate and spaced apart from the substrate, and a two-dimensional material layer between the substrate and the metal layer. The two-dimensional material layer may be configured to limit and/or block an electron transfer between the substrate and the metal layer. A resistivity of a metal layer on the two-dimensional material layer may be lowered by the two-dimensional material layer.
Abstract:
A vertical channel transistor includes a first source/drain electrode; a second source/drain electrode spaced apart from the first source/drain electrode in a first direction; a first channel pattern between the first source/drain electrode and the second source/drain electrode; a first gate electrode on a side surface of the first channel pattern; a first gate insulation layer between the first channel pattern and the first gate electrode; and a first graphene insertion layer between the first source/drain electrode and the first channel pattern.
Abstract:
A film deposition method may include preparing a non-planar substrate including a first surface, a second surface, and an inclined surface between the first surface and the second surface; depositing a film having a thickness deviation on the first surface, the second surface, and the inclined surface; and etching the film deposited on the first surface, the second surface, and the inclined surface. A height of the second surface may be different than a height of the first surface.
Abstract:
A method of forming nanocrystalline graphene according to an embodiment may include: arranging a substrate having a pattern in a reaction chamber; injecting a reaction gas into the reaction chamber, where the reaction gas includes a carbon source gas, an inert gas, and a hydrogen gas that are mixed; generating a plasma of the reaction gas in the reaction chamber; and directly growing the nanocrystalline graphene on a surface of the pattern using the plasma of the reaction gas at a process temperature. The pattern may include a first material and the substrate may include a second material different from the first material.