Abstract:
Embodiments are directed to high electron mobility transistor (HEMT) devices and methods. One such HEMT device includes a substrate having a first surface, and first and second heterostructures on the substrate and facing each other. Each of the first and second heterostructures includes a first semiconductor layer on the first surface of the substrate, a second semiconductor layer on the first surface of the substrate, and a two-dimensional electrode gas (2DEG) layer between the first and second semiconductor layers. A doped semiconductor layer is disposed between the first and second heterostructures, and a source contact is disposed on the first heterostructure and the second heterostructure.
Abstract:
The pressure in the combustion chamber of an electronically controlled spark plug ignition engine may be estimated in real time mode without specific sensors by processing sensed ionization current data to calculate features of the current waveform proven to be correlated to the pressure inside the engine cylinders and correlating them on the basis of a look up table of time invariant correlation coefficients generated through a calibration campaign of tests on a test engine purposely equipped with sensors. A mathematical model of the electrical and physical spark plug ignition system and combustion chamber of the engine is refined during calibration by iteratively testing the interactive performance of correlation coefficients of related terms of a mathematical expression of the model and comparing the expressed pressure value with the real pressure value as measured by a sensor.
Abstract:
A vertical conduction integrated electronic device including: a semiconductor body; a trench that extends through part of the semiconductor body and delimits a portion of the semiconductor body, which forms a first conduction region having a first type of conductivity and a body region having a second type of conductivity, which overlies the first conduction region; a gate region of conductive material, which extends within the trench; an insulation region of dielectric material, which extends within the trench and is arranged between the gate region and the body region; and a second conduction region, which overlies the body region. The second conduction region is formed by a conductor.
Abstract:
An integrated electronic device includes an electronic component and a temperature transducer. The temperature transducer is electrically arranged between a control terminal and a conduction terminal of the electronic component and includes a first diode. The first diode has a bulk resistance of at least 1 kΩ.
Abstract:
A vertical conduction integrated electronic device including: a semiconductor body; a trench that extends through part of the semiconductor body and delimits a portion of the semiconductor body, which forms a first conduction region having a first type of conductivity and a body region having a second type of conductivity, which overlies the first conduction region; a gate region of conductive material, which extends within the trench; an insulation region of dielectric material, which extends within the trench and is arranged between the gate region and the body region; and a second conduction region, which overlies the body region. The second conduction region is formed by a conductor.
Abstract:
A VTMOS transistor in semiconductor material of a first type of conductivity includes a body region of a second type of conductivity and a source region of the first type of conductivity. A gate region extends into the main surface through the body region and is insulated from the semiconductor material. A region of the gate region extends onto the main surface is insulated from the rest of the gate region. An anode region of the first type of conductivity is formed into said insulated region, and a cathode region of the second type of conductivity is formed into said insulated region in contact with the anode region; the anode region and the cathode region define a thermal diode electrically insulated from the chip.
Abstract:
A vertical conduction integrated electronic device including: a semiconductor body; a trench that extends through part of the semiconductor body and delimits a portion of the semiconductor body, which forms a first conduction region having a first type of conductivity and a body region having a second type of conductivity, which overlies the first conduction region; a gate region of conductive material, which extends within the trench; an insulation region of dielectric material, which extends within the trench and is arranged between the gate region and the body region; and a second conduction region, which overlies the body region. The second conduction region is formed by a conductor.
Abstract:
The semiconductor integrated device has a conductive region, for example, an external contact pad, configured to be traversed by a current to be measured. A concentrator of magnetic material partially surrounds the conductive region and has an annular shape open at a point defining an air gap area where a sensitive region is arranged, which is electrically conductive and is typically of doped semiconductor material, such as polycrystalline silicon. The device is integrated in a chip formed by a substrate and by an insulating layer, the sensitive region and the concentrator being formed in the insulating layer.
Abstract:
An integrated vacuum microelectronic structure is described as having a highly doped semiconductor substrate, a first insulating layer placed above said doped semiconductor substrate, a first conductive layer placed above said first insulating layer, a second insulating layer placed above said first conductive layer, a vacuum trench formed within said first and second insulating layers and extending to the highly doped semiconductor substrate, a second conductive layer placed above said vacuum trench and acting as a cathode, a third metal layer placed under said highly doped semiconductor substrate and acting as an anode, said second conductive layer is placed adjacent to the upper edge of said vacuum trench, the first conductive layer is separated from said vacuum trench by portions of said second insulating layer and is in electrical contact with said second conductive layer.
Abstract:
An integrated electronic device including an electronic component and a temperature transducer formed in a first die. The temperature transducer including a first diode and a second diode which are connected in antiparallel.