Abstract:
The present disclosure is directed to a sensor die with an embedded light sensor and an embedded light emitter as well as methods of manufacturing the same. The light emitter in the senor die is surrounded by a resin. The sensor die is incorporated into semiconductor device packages as well as methods of manufacturing the same. The semiconductor device packages include a first optically transmissive structure on the light sensor of the sensor die and a second optically transmissive structure on the light emitter of the sensor die. The first optically transmissive structure and the second optically transmissive structure cover and protect the light sensor and the light emitter, respectively. A molding compound is on a surface of a sensor die and covers sidewalls of the first and second optically transmissive structures on the sensor die.
Abstract:
One or more embodiments are directed to a semiconductor package that includes an integrated heatsink and methods of forming same. In one embodiment, the semiconductor package includes a semiconductor die coupled to a first surface of a die pad. A heatsink is coupled to a second surface of the die pad. Encapsulation material is located around the die and die pad and over a portion of the heatsink. A bottom portion of the heatsink may remain exposed from the encapsulation material. Furthermore, a portion of the heatsink may extend from a side of the encapsulation material.
Abstract:
A proximity sensor includes a semiconductor die, a light emitting assembly, a redistribution layer, and an encapsulating layer. A surface of the semiconductor die includes a sensor area and contact pads. A lens is positioned over the sensor area of the semiconductor die. The light emitting assembly includes a light emitting device having a light emitting area, a lens positioned over the light emitting area, and contact pads that face the redistribution layer. A side of the redistribution layer includes contact pads. Electrical connectors place each of the contact pads of the semiconductor die in electrical communication with a respective one of the contact pads of the redistribution layer. The encapsulating layer is positioned on the redistribution layer and at least partially encapsulates the semiconductor die, the lens over the sensor area of the semiconductor die, and the light emitting assembly.
Abstract:
A proximity sensor includes a printed circuit board substrate, a semiconductor die, electrical connectors, a lens, a light emitting assembly, and an encapsulating layer. The semiconductor die is positioned over the printed circuit board substrate with its upper surface facing away from the printed circuit board substrate. Each of the electrical connectors is in electrical communication with a contact pad of the semiconductor die and a respective contact pad of the printed circuit board substrate. The lens is positioned over a sensor area of the semiconductor die. The light emitting assembly includes a light emitting device having a light emitting area, a lens positioned over the light emitting area, and contact pads facing the printed circuit board substrate. The encapsulating layer is positioned on the printed circuit board substrate, at least one of the electrical connectors, the semiconductor die, the lens, and the light emitting assembly.
Abstract:
An image sensing device may include an interconnect layer, an image sensor IC coupled to the interconnect layer and having an image sensing surface, and an IR filter aligned with the image sensing surface opposite the interconnect layer. The image sensing device may include a flexible interconnect layer aligned with the interconnect layer and having a flexible substrate extending laterally outwardly from the interconnect layer, and electrically conductive traces on the flexible substrate. The image sensing device may also include solder bodies coupling the interconnect layer and the flexible interconnect layer and also defining a gap between the interconnect layer and the flexible interconnect layer.