Abstract:
Embodiments of the invention provide a system and method for chip to chip communications in electronic circuits. In one embodiment, a networking device includes an input port circuit having a transmitter circuit coupled one or more transmitter antennas, wherein the input port circuit transmits a data packet to a first output port circuit using millimeter wave signals. The networking device includes output port circuits including at least the first output port circuit, each of the output port circuits having a receiver circuit coupled to one or more receiver antennas. The networking device includes a beamforming circuit coupled to the one or more transmitter antennas of the input port circuit, wherein the beamforming circuit causes the one or more transmitter antennas to transmit an antenna beam directed at the one or more receiver antennas of the first output port circuit.
Abstract:
In described examples, a method of operating a charge pump includes a first control signal deactivating a first transistor, and the first control signal's logical complement activating a second transistor to reset the first transistor's DC bias voltage. The first control signal's logical complement deactivates the second transistor, and the first control signal provides a bias voltage to the first transistor to activate it, causing current to be transmitted from an input voltage to an output terminal. A second control signal deactivates a third transistor, and the second control signal's logical complement activates a fourth transistor to reset the second transistor's DC bias voltage. The second control signal's logical complement deactivates the fourth transistor, and the second control signal provides a bias voltage to the third transistor to activate it, causing current to be transmitted from the output terminal to a ground.
Abstract:
In described examples of a magnetically coupled structure on a substrate with an integrated circuit device, the structure includes a first coil in a differential configuration, a second coil located above the first coil in a generally stacked configuration, and a center tap connection to a winding of the second coil. The first coil includes a first differential terminal, a second differential terminal, and metal windings of the first coil. The first coil's metal windings form a continuous spiral electrical path between the first and second differential terminals. The first coil's metal windings include turns and crossing connections between the turns. The turns are fabricated in an integrated circuit metal wiring level, and the crossing connections are fabricated in at least one metal level other than the metal wiring level containing the turns. The center tap is positioned to create a balanced structure.
Abstract:
In described examples of a magnetically coupled structure on a substrate with an integrated circuit device, the structure includes a first coil in a differential configuration, a second coil located above the first coil in a generally stacked configuration, and a center tap connection to a winding of the second coil. The first coil includes a first differential terminal, a second differential terminal, and metal windings of the first coil. The first coil's metal windings form a continuous spiral electrical path between the first and second differential terminals. The first coil's metal windings include turns and crossing connections between the turns. The turns are fabricated in an integrated circuit metal wiring level, and the crossing connections are fabricated in at least one metal level other than the metal wiring level containing the turns. The center tap is positioned to create a balanced structure.
Abstract:
A PLL including a VCO with a variable capacitance (such as an LC VCO) including a switched capacitor bank and a varactor, the PLL providing lock range extension over temperature using dynamic capacitor bank switching to dynamically adjust varactor set point based on junction temperature. The varactor is responsive to the Vctrl control voltage to adjust a capacitance of the variable capacitance to control the phase of the PLL signal. Compensation circuitry dynamically adjusts varactor set point by dynamically switching the capacitor bank based in a junction temperature associated with the PLL circuitry, thereby extending PLL lock range over temperature.
Abstract:
A multi-ladder DAC includes first and second resistor ladders, with a switch-interconnect. The switch-interconnect includes a second set of switches connected between each node of the first ladder and the top and bottom tap points of the second ladder. All other second ladder tap points are part of a loop tied to the nodes above and below each resistor through a second set of switches. Because no current flows through the switches that tie the top and bottom second-ladder tap points to the nodes of the first ladder, avoiding IRswitch error, thereby improving DNL.
Abstract:
A voltage-controlled oscillator (VCO), includes a resonator circuit connected to receive an input voltage and having a first output node and a second output node; and at least one cross-coupled switching circuit portion, each cross-coupled switching circuit portion comprising a first transistor having a drain connected to the first output node and a second transistor having a drain connected to the second output node, the first transistor having a gate connected between the drain of the second transistor and the second output node and the second transistor having a gate connected between the drain of the first transistor and the first output node, each of the first and second transistors having a threshold voltage that is determined to be the highest threshold voltage available for the process used to create the VCO.
Abstract:
A latch circuit includes first and second inverters, each with latching (inner) and clocking (outer) PMOS/NMOS transistor pairs in a series/stack configuration. A first inverter includes a D_latching PMOS/NMOS transistor pair, drain-connected at a D node. A first /clock PMOS transistor is coupled between a high rail and a source terminal of the D_latching PMOS transistor, and a first clock NMOS transistor is coupled between a low rail and the source terminal of the D_latching NMOS transistor. A second inverter includes a Dbar_latching PMOS/NMOS transistor pair, drain-connected at a Dbar node. A second /clock PMOS transistor is coupled between the high rail and the source terminal of the Dbar_latching PMOS transistor, and a second clock NMOS transistor is coupled between the low rail and the Dbar_latching NMOS transistor. A cross-coupling switch circuit connected between the D node and the Dbar node. The first and second /clock PMOS transistors can be combined as a single /clock PMOS transistor connected between the high rail and the source terminals of respectively the D_latching and Dbar_latching PMOS transistors, and the first and second clock NMOS transistors can be combined as a single clock NMOS transistor connected between the low rail and the source terminals of respectively the D_latching and Dbar_latching NMOS transistors. As an example application, the latch circuit can be used in a quadrature (IQ) frequency divider.
Abstract:
A voltage-controlled oscillator (VCO), includes a resonator circuit connected to receive an input voltage and having a first output node and a second output node; and at least one cross-coupled switching circuit portion, each cross-coupled switching circuit portion comprising a first transistor having a drain connected to the first output node and a second transistor having a drain connected to the second output node, the first transistor having a gate connected between the drain of the second transistor and the second output node and the second transistor having a gate connected between the drain of the first transistor and the first output node, each of the first and second transistors having a threshold voltage that is determined to be the highest threshold voltage available for the process used to create the VCO.