Abstract:
A method of protecting a micro-mechanical sensor structure embedded in a micro-mechanical sensor chip, in which the micro-mechanical sensor structure is fabricated with a protective membrane, the micro-mechanical sensor chip is arranged so that a surface of the protective membrane faces toward a second chip, and the micro-mechanical sensor chip is secured to the second chip.
Abstract:
A method and a system for controlling a wireless sensor network from a user interface coupled to the Internet are provided. A user accesses an Internet-based portal from the user interface and establishes a secure broadband Internet connection between a remote control module coupled to the wireless sensor network and the portal. The connection is established by manually triggering a connection between the remote control module and the portal from the remote control module.
Abstract:
A method of teaching pronunciation is provided which includes communicating by a voice portal server to a user a model word and detecting a response by the user to the voice portal server. The method also includes comparing the response word to the model word and determining a confidence level based on the comparison of the response word to the model word. The method further includes comparing an acceptance limit to the confidence level and confirming a correct pronunciation of the model word if the confidence level one of equals and exceeds the acceptance limit.
Abstract:
An exemplary embodiment of the present invention creates a micromechanical rotational rate sensor having a first Coriolis mass element and a second Coriolis mass element which may be situated over a surface of a substrate. An exemplary embodiment of a micromechanical rotational rate sensor may have an activating device by which the first Coriolis mass element and the second Coriolis mass element are able to have vibrations activated along a first axis. An exemplary embodiment of a micromechanical rotational rate sensor may have a detection device by which deflections of the first Coriolis mass elements and of the second Coriolis element are able to be detected along a second axis, which is perpendicular to the first axis, on the basis of a correspondingly acting Coriolis force. The first axis and second axis may run parallel to the surface of the substrate. The detecting device may have a first detection mass device and a second detection mass device. The centers of gravity of the first Coriolis mass element, the second Coriolis mass element, the first detection mass device and the second detection mass device may coincide at a common mass center of gravity when they are at rest.
Abstract:
A micromechanical yaw rate sensor having: a substrate having an anchoring device provided on the substrate; and an annular flywheel that is connected, via a flexural spring system, with the anchoring device in such a way that the area of connection with the anchoring device is located essentially in the center of the ring, so that the annular flywheel is able to be displaced, elastically from its rest position, about an axis of rotation situated perpendicular to the substrate surface, and about at least one axis of rotation situated parallel to the substrate surface. The anchoring device has two bases that are situated opposite one another and are connected fixedly with the substrate, connected with one another via a bridge. A V-shaped flexural spring of the flexural spring system is attached to each of the opposite sides of the bridge in such a way that the apex is situated on the bridge and the limbs are spread towards the flywheel with an opening angle.
Abstract:
In the method and device for tuning a first oscillator with a second oscillator respective response signals of the first oscillator are produced from corresponding frequency-shifted and/or phase-shifted signals of the second oscillator. The first oscillator is tuned to the second oscillator according to the difference of the respective response signals. For amplitude correction a quotient is formed by dividing an output signal by the sum of the response signals. The method and device according to the invention are especially useful in a rotation rate sensor. The invention also includes a rotation rate sensor, which includes a device for determining rotation rate from the oscillations of a first and second oscillator and the device for tuning the first oscillator with the second oscillator.
Abstract:
A microtool for manipulating components is proposed. A component is held with the microtool by at least one gripper arm having a gripping surface, the gripper being movable by an actuator structure. Also provided is a device for releasing the held component from the gripping surface, whereby an acceleration is induced in the gripper arm for at least a time, and the force of inertia resulting from the inertial mass of the held component and the exerted acceleration will be greater than any force of adhesion acting between the held component and the gripping surface. A process is also proposed for producing a microtool or a microtool part, in particular a microgripper by micropatterning. For this purpose, the microtool or the microtool part to be manufactured is patterned out of a layered structure having a base layer, an intermediate layer, and a structuring layer, which is patterned using a masking layer in conformance with the geometry of the microtool to be manufactured; the microtool or the microtool part is patterned out of the structuring layer. Subsequently, the intermediate layer is then undercut (e.g., etched from underneath) in a second etching process.
Abstract:
A method for measuring a physical variable in which a structure is put in resonant oscillations and a change in the oscillation frequency of the structure as a result of a change in the physical variable to be measured is detected, and a frequency-analog signal is provided. A structure oscillating with a resonance frequency receives an electrostatic force.
Abstract:
A micromechanical gradient sensor having a substrate, a ring body which is mounted elastically above the substrate with the assistance of a first spring device, a driving device which is connected to the ring body for driving the ring body to rotary motions about the ring axis, and an acceleration sensing device which is secured to the ring body via a second spring device. The acceleration sensing device is designed in such a manner that, as a result of the centrifugal force acting due to the rotary motions, and as a result of the force acting against the spring tension of the two spring devices due to the gravitational acceleration, the acceleration sensing device is able to travel out along the sensor axis connecting it, and running through the ring axis. Also included is an evaluation unit for determining the excursion of the acceleration sensing device and for determining the angle of inclination of sensor axis relative to the perpendicular component.
Abstract:
A junction box of a solar cell array/solar module, having a plurality of solar cells connected in multiple strings and including a separate top part mechanically connected to a bottom part, and in one of the bottom and top parts, first contact elements, some being connected in the installed state to solar cells and two of which are connected to a connecting cable of the solar cell array, and in another one of the bottom and top parts, interconnected second contact elements electrically contact first contact elements in the installed state and join them are situated there, and an actuator for releasing the mechanical connection between the bottom and top parts, for completely separating the top and bottom parts and for disconnecting the contact between the first and second contact elements and a control unit assigned to the actuator at the input side for generating an actuator control signal.