Abstract:
A semiconductor device includes a plurality of gate structures, a source/drain region, a first dielectric layer, and a floating spacer. The gate structures are disposed on a substrate, and each gate structure includes a gate electrode, a capping layer and a spacer surrounding the gate electrode and the capping layer. The source/drain region is disposed at two sides of the gate electrode. The first dielectric layer is disposed on the substrate and has a height being less than a height of the gate electrode. The floating spacer is disposed on a side wall of the spacer, and also on the first dielectric layer.
Abstract:
A semiconductor device includes a fin structure, an isolation structure, a gate structure and an epitaxial structure. The fin structure protrudes from the surface of the substrate and includes a top surface and two sidewalls. The isolation structure surrounds the fin structure. The gate structure overlays the top surface and the two sidewalls of a portion of the fin structure, and covers a portion of the isolation structure. The isolation structure under the gate structure has a first top surface, and the isolation structure at two sides of the gate structure has a second top surface. The first top surface is higher than the second top surface. The epitaxial layer is disposed at one side of the gate structure and is in direct contact with the fin structure.
Abstract:
A semiconductor device includes a fin structure, an insulating structure, a protruding structure, an epitaxial structure, and a gate structure. The fin structure and the insulating structure are disposed on the substrate. The protruding structure is in direct contact with the substrate and partially protrudes from the insulating structure, and the protruding structure is the fin structure. The epitaxial structure is disposed on a top surface of the fin structure and completely covers the top surface of the fin structure. In addition, the epitaxial structure has a curved top surface. The gate structure covers the fin structure and the epitaxial structure.
Abstract:
A fabrication method of a semiconductor structure includes the following steps. First of all, a gate structure is provided on a substrate, and a first material layer is formed on the substrate and the gate structure. Next, boron dopant is implanted to the substrate, at two sides of the gate structure, to form a first doped region, and P type conductive dopant is implanted to the substrate, at the two sides of the gate structure, to form a second doped region. As following, a second material layer is formed on the first material layer. Finally, the second material layer, the first material layer and the substrate at the two sides of the gate structure are etched sequentially, and a recess is formed in the substrate, at the two sides of the gate structure, wherein the recess is positioned within the first doped region.
Abstract:
A process for fabricating a fin-type field effect transistor (FinFET) structure is described. A semiconductor substrate is patterned to form a fin. A spacer is formed on the sidewall of the fin. A portion of the fin is removed, such that the spacer and the surface of the remaining fm together define a cavity. A piece of a semiconductor compound is formed from the cavity, wherein the upper portion of the piece of the semiconductor compound laterally extends over the spacer.
Abstract:
A semiconductor process includes the following steps. A substrate is provided. At least a fin-shaped structure is formed on the substrate and a gate structure partially overlapping the fin-shaped structure is formed. Subsequently, a dielectric layer is blanketly formed on the substrate, and a part of the dielectric layer is removed to form a first spacer on the fin-shaped structure and a second spacer besides the fin-shaped structure. Furthermore, the second spacer and a part of the fin-shaped structure are removed to form at least a recess at a side of the gate structure, and an epitaxial layer is formed in the recess.
Abstract:
A process for fabricating a fin-type field effect transistor (FinFET) structure is described. A semiconductor substrate is patterned to form a fin. A spacer is formed on the sidewall of the fin. A portion of the fin is removed, such that the spacer and the surface of the remaining fm together define a cavity. A piece of a semiconductor compound is formed from the cavity, wherein the upper portion of the piece of the semiconductor compound laterally extends over the spacer.
Abstract:
A method for fabricating semiconductor device is disclosed. First, a substrate is provided, and a gate structure is formed on the substrate. Next, a recess is formed adjacent to two sides of the gate structure, and an epitaxial layer is formed in the recess, in which a top surface of the epitaxial layer is lower than a top surface of the substrate. Next, a cap layer is formed on the epitaxial layer, in which a top surface of the cap layer is higher than a top surface of the substrate.
Abstract:
A semiconductor device and method of forming the same, the semiconductor device includes a first and second fin shaped structures, a first and second gate structures and a first and second plugs. The first and second fin shaped structures are disposed on a first region and a second region of a substrate and the first and second gate structure are disposed across the first and second fin shaped structures, respectively. A dielectric layer is disposed on the substrate, covering the first and second gate structure. The first and second plugs are disposed in the dielectric layer, wherein the first plug is electrically connected first source/drain regions adjacent to the first gate structure and contacts sidewalls of the first gate structure, and the second plug is electrically connected to second source/drain regions adjacent to the second gate structure and not contacting sidewalls of the second gate structure.
Abstract:
A method for fabricating semiconductor device includes the steps of: providing a substrate having a first fin-shaped structure thereon; forming a spacer adjacent to the first fin-shaped structure; using the spacer as mask to remove part of the substrate for forming a second fin-shaped structure, wherein the second fin-shaped structure comprises a top portion and a bottom portion; and forming a doped portion in the bottom portion of the second fin-shaped structure.