Abstract:
A material comprises a first layer that includes a thermoplastic polymer having a microstructure that includes a plurality of closed cells, each cell containing a void and each cell having a maximum dimension extending across the void within the cell that ranges between 1 micrometer and 200 micrometers long. The material also includes a second layer including a thermoplastic polymer having a microstructure that includes a plurality of closed cells, each cell containing a void and each cell having a maximum dimension extending across the void within the cell that ranges between 1 micrometer and 200 micrometers long. The material also includes an interface layer formed by fusion bonding the first layer to the second layer, the interface layer having a microstructure that includes a plurality of closed cells, each cell containing a void and each cell having a maximum dimension extending across the void within the cell that is at least 100 micrometers long.
Abstract:
A selective high intensity ultrasonic foaming technique is described to fabricate porous polymers for biomedical applications. Process variables, including ultrasound power, scanning speed, and gas concentration have an affect on pore size. Pore size can be controlled with the scanning speed of the ultrasound insonation and interconnected porous structures could be obtained using a partially saturated polymers. A gas concentration range of 3-5% by weight creates interconnected open-celled porous structures. The selective high intensity ultrasonic foaming method can be used on biocompatible polymers so as not to introduce any organic solvents. The method has use in cell related biomedical applications such as studying cell growth behaviors by providing a porous environment with varying topological features.
Abstract:
A process for producing cellular thermoplastic articles. The process comprises the steps of treating a solid parison made from a thermoplastic material with a saturating gas at an elevated pressure for a period of time to provide a gas-saturated parison; heating the gas-saturated parison to prepare a cellular parison; placing the cellular parison in a mold; and blowing a molding gas into the cellular parison to expand the cellular parison into the shape of the mold to provide a shaped cellular article.
Abstract:
A process for producing cellular thermoplastic articles. The process comprises the steps of treating a solid parison made from a thermoplastic material with a saturating gas at an elevated pressure for a period of time to provide a gas-saturated parison; heating the gas-saturated parison to prepare a cellular parison; placing the cellular parison in a mold; and blowing a molding gas into the cellular parison to expand the cellular parison into the shape of the mold to provide a shaped cellular article.
Abstract:
Cellular thin films include a first side separated from a second side, the separation of which defines the thickness of the thin film; at least one layer of a polymeric material arranged along the thickness of the thin film, wherein the polymeric material includes cells and the first and second sides of the thin film have exterior surfaces that have substantially the same thickness as the interior walls forming the cells. The surfaces of the thin films have bumps caused by the cells. The thin exterior surfaces of the thin films is advantageous to allow the films to be flexible.
Abstract:
A collapsible container for containing goods, including a liquid and/or solid/liquid mixture, configured to be assembled and disassembled manually without the use of tools. The container includes a plurality of upright panels coupled to a base by their bottom portions. Each panel of a first type is flanked along its opposing upright edges by a pair of adjacent panels of a second type. Each of the edges of each of the panels is coupled by an edge joining assembly to one of the edges of one of the flanking panels. The assembly comprises a first elongated edge joining member having a longitudinal channel with alternating partially enclosed portions and substantially unenclosed portions and a second elongated edge joining member having longitudinally extending spaced apart locking members. Each unenclosed portion is configured to receive a locking member, which are slid longitudinally within the channel into an adjacent partially enclosed portion.
Abstract:
The invention disclosed herein relates to relates to foamed thermoplastic material objects and articles of manufacture having an internal layered cellular structure, as well as to methods of making the same. In one embodiment, the invention is directed to a multi-layer foamed polymeric article of manufacture, comprising: a non-laminated multi-layer thermoplastic material sheet, wherein the multi-layer thermoplastic material sheet has first and second discrete outer layers sandwiching a plurality of discrete inner foamed layers, and wherein the two outer layers and plurality discrete inner foamed layers are integral with one another. The thermoplastic material may be a semi-crystalline polymer such as, for example, PET (polyethylene terephthalate), PEEK (polyetheretherketone), PEN (polyethylene napthalate), PBT (polybutylene terephthalate), PMMA (polymethyl methacrylate), PLA (polylactide), polyhydroxy acid (PHA), thermoplastic urethane (TPU), or blends thereof. The two outer layers may be unfoamed skin layers having smooth outer surfaces, and the discrete inner foamed layers may be microcellular.
Abstract:
The present invention provides a method for the semi-continuous production of microcellular foam articles. In a preferred embodiment, a roll of polymer sheet is provided with a gas channelling means interleaved between the layers of polymer. The roll is exposed to a non-reacting gas at elevated pressure for a period of time sufficient to achieve a desired concentration of gas within the polymer. The saturated polymer sheet is then separated from the gas channelling means and bubble nucleation and growth is initiated by heating the polymer sheet. After foaming, bubble nucleation and growth is quenched by cooling the foamed polymer sheet.
Abstract:
Methods for reducing the density of thermoplastic materials and the articles made therefrom having similar or improved mechanical properties to the solid or noncellular material. Also disclosed are improvements to foaming methods and the cellular structures of the foams made therefrom, and methods for altering the impact strength of solid or noncellular thermoplastic materials and the shaping of the materials into useful articles.
Abstract:
Cellular thin films include a first side separated from a second side, the separation of which defines the thickness of the thin film; at least one layer of a polymeric material arranged along the thickness of the thin film, wherein the polymeric material includes cells and the first and second sides of the thin film have exterior surfaces that have substantially the same thickness as the interior walls forming the cells. The surfaces of the thin films have bumps caused by the cells. The thin exterior surfaces of the thin films is advantageous to allow the films to be flexible.