Abstract:
A combined process for the conversion of solid starting particles into solid intermediate particles and reducing the median diameter of the intermediate particles to obtain product particles. This process involves flowing a suspension of starting particles through a series of at least two conversion vessels, thereby converting at least part of the starting particles into intermediate particles, adding a supercritical fluid to one or more of the conversion vessels, thereby forming a supercritical suspension, and releasing pressure from the supercritical suspension, thereby expanding the suspension and converting the intermediate particles into product particles.
Abstract:
In the present invention, there is provided a process and an apparatus for hydrogenating hydrocarbon fuels. A receptacle is partly filled an aqueous solution containing sodium hydroxide. A hydrocarbon fuel is then introduced inside the receptacle atop the aqueous solution. Aluminum is introduced in the aqueous solution, thereby producing hydrogen gas. The hydrogen gas is bubbled through the hydrocarbon fuel for hydrogenating the fuel.
Abstract:
The process for producing hydrogen gas according to the present invention consists of reacting aluminum with water in the presence of sodium hydroxide as a catalyst. An apparatus for carrying out the method is also described. The apparatus comprises an expandable container wherein the pressure and temperature of the reaction causes the container to expand and contract to control the degree of immersion of a fuel cartridge in water and consequently to control the intensity and duration of the reaction.
Abstract:
The process for producing hydrogen gas according to the present invention consists of reacting aluminum with water in the presence of sodium hydroxide as a catalyst. An apparatus for carrying out the method is also described. The apparatus comprises an expandable container wherein the pressure and temperature of the reaction causes the container to expand and contract to control the degree of immersion of a fuel cartridge in water and consequently to control the intensity and duration of the reaction.
Abstract:
The invention relates to a method and an apparatus for carrying out a treatment in the presence of centrifugal force. The treatment may be a physical or a chemical treatment. For this purpose the first and second phase are brought into contact with each other. The second phase comprises a phase soluble in the first phase and a third phase dispersed in the soluble phase. According to the invention at least one liquid phase is supplied continuously to a chamber for treatment (2) with a course of treatment while the third phase, which is a non-aggregating phase, is dispersed finely over the breadth of the course of treatment by the first phase.
Abstract:
Electric arc material-processing system wherein an underwater spark gap is defined in a reactor by spaced graphite electrodes and a conductive carbon rod provided endwise to the gap. The electrodes are rotated by mechanical means, intermittently or continuously. Carbon and water are thereby converted into fuel gas, evolving from the arc, and comprising hydrogen as the major constituent and carbon monoxide as predominant minor constituent. Both the fuel and its combustion products are substantially free from contaminants found customarily in petroleum-based fuels and their combustion products. Surplus heat enables water from any source to be rendered potable.
Abstract:
An apparatus for reaction between a solid phase and a liquid phase of the present invention allows a tubular reaction vessel accommodating the liquid phase that reacts with the solid phase bound to the inside surface of said reaction vessel to hold in the peripheral region of a rotating element inclined with respect to the horizontal direction and also allows said tubular reaction vessel to repeat a predetermined number of cycles, each consisting at least of the steps of rotating continuously said rotating element in the inclined state at a predetermined constant speed for a predetermined time and loading/unloading said reaction vessel for the rest time of the rotating element. Because of these features, the apparatus of the present invention makes possible to have a simple construction which can be easily handled and can continuously promote the reaction in a plurality of the reaction vessels under identical reaction conditions for identical reaction time at a series of time.
Abstract:
A wide variety of chemical processes using thin films of reactants are carried out on the surface of a body rotating at high speed and the products are readily isolated (for example as fine particles or fibres) by using centrifugal force to fling the products from the rim of the body.
Abstract:
Phosphoric acid is prepared from phosphate rock and sulfuric acid by using a reaction train comprising a dissolving slurry and a crystallization slurry maintained at different sulfate levels. Both inter and intra vessel circulation are used at high rates to minimize reagent concentration gradients and temperature gradients and provide a suitable crystallization environment. Preferably, the intra vessel circulation is substantially in plug flow, as through a draft tube.
Abstract:
Apparatus for manufacture of wet process phosphoric acid wherein phosphate rock and sulfuric acid are separately added to a combination reactor and cooler unit at a rate of addition such that the increase in calcium content and sulfate content in the slurry contained in the unit are small. Circulation of the slurry is provided and the rate at which sulfuric acid and phosphate rock are added is small compared to the rate of circulation of the reactor slurry.