Abstract:
Provided is a catalyst material comprising aggregates of nanoneedles of mainly R-type manganese dioxide and having a mesoporous structure. With this, water can be oxidatively decomposed under visible light at room temperature to produce oxygen gas, proton and electron. Also provided is a catalyst material comprising aggregates of nanoparticles of mainly hydrogenated manganese dioxide. With this, acetic acid or an inorganic substance can be synthesized from carbon dioxide gas.
Abstract:
A flame retardant polymer composite is disclosed. The composite includes a polymer base material and a flame retardant filler provided in the polymer base material, the flame retardant filler containing seeded boehmite particulate material having an aspect ratio of not less than 3:1
Abstract:
The present invention relates to porous magnesia of substantially spherical shape having a silica layer, which may be used as a carrier for deodorants, antibacterials, catalysts, slow action agents (the adsorbent having the possibility of decreasing the effect of the co-administered medicines or fertilizer and plastic additives, and body pigments.
Abstract:
A process is described for the synthesis of metal oxides in a nanometric particle form that cannot be easily obtained by conventional bulk synthesis techniques. The method makes use of Colloid Occluded Carbons (COC) and Colloid Imprinted Carbons (CIC) as reagents and as templating agents for the preparation of metal oxides in nanometric particle form. The nanometric particles are suitable useful in the field of chemical catalysis, particularly for petroleum refining when in porous form, and as sensors, optical wave guides, and coatings.
Abstract:
Lepidocrocite potassium magnesium titanate having a composition represented by the formula K0.2-0.7Mg0.4Ti1.6O3.7-4 and obtainable by subjecting an aqueous slurry of lepidocrocite potassium magnesium titanate having a composition represented by the formula K0.8Mg0.4Ti1.6O4 to an acid treatment and subsequent calcination.
Abstract:
The present invention provides a cerium oxide particulate composition and a process for preparing a cerium oxide particulate composition comprising aggregates of approximately spherical primary particles of cerium oxide. The method involves preparing a solution of a cerium oxide precursor, aerosolizing the cerium oxide precursor solution, and heating the aerosol to provide the cerium oxide particle composition.
Abstract:
The present invention provides a cerium oxide particulate composition and a process for preparing a cerium oxide particulate composition comprising aggregates of approximately spherical primary particles of cerium oxide. The method involves preparing a solution of a cerium oxide precursor, aerosolizing the cerium oxide precursor solution, and heating the aerosol to provide the cerium oxide particle composition.
Abstract:
The present invention provides a cerium oxide particulate composition and a process for preparing a cerium oxide particulate composition comprising aggregates of approximately spherical primary particles of cerium oxide. The method involves preparing a solution of a cerium oxide precursor, aerosolizing the cerium oxide precursor solution, and heating the aerosol to provide the cerium oxide particle composition.
Abstract:
A method of treating a hollandite compound to improve its adsorption of nitrogen monoxide, which comprises subjecting a hollandite compound having a hollandite-type crystal structure and represented by a chemical formula AxMyN8-yO16, wherein A is an alkali metal or an alkaline earth metal K, Na, Rb or Ca, M is a bivalent or trivalent metal element Fe, Ga, Zn, In, Cr, Co, Mg, Al or Ni, N is a tetravalent metal element Sn or Ti, 0
Abstract:
A ferrite powder for bonded magnets having a substantially magnetoplumbite-type crystal structure and an average diameter of 0.9-2 &mgr;m, the ferrite powder having a basic composition represented by the following general formula: (A1-xRxO.n[Fe1-yMy)2O3] by atomic ratio, wherein A is Sr and/or Ba; R is at least one of rare earth elements including Y, La being indispensable; M is at least one element selected from the group consisting of Co, Mn, Ni and Zn; and x, y and n are numbers meeting the conditions of 0.01≦x≦0.4, [x/(2.6n)]≦y≦[x/(1.6n)], and 5≦n≦6, (Si+Ca) being 0.2 weight % or less, and (Al+Cr) being 0.13 weight % or less, can be produced by mixing iron oxide containing 0.06 weight % or less of (Si+Ca) and 0.1 weight % or less of (Al+Cr) with compounds of A, R and M elements, calcining the resultant mixture for ferritization, pulverizing the resultant magnetically isotropic ferrite and then heat-treating the pulverized ferrite at 750-950° C. for 0.5-3 hours in the air.