Abstract:
A hybrid rope (40) or a hybrid strand (50) comprising a core element (42, 52), a first (44, 54) and a second (46, 56) metallic closed layer surrounding said core element (42, 52). The core element (42, 52) includes a bundle of synthetic yarns. The first metallic closed layer (44, 54) includes a plurality of first strands of wires helically twisted together with the core element (42, 52) in a first direction. The second metallic closed layer (46, 56) includes a plurality of second wires or strands helically twisted together with said core element (42, 52) and said first metallic closed layer (44, 54) in a second direction. The cross-sectional area of the core element (42, 52) is larger than the total cross-sectional area of the first (44, 54) and second (46, 56) metallic closed layers. A corresponding method of producing such a hybrid rope or hybrid strand is also disclosed.
Abstract:
A method of manufacturing a metal cord with two concentric layers of wires is provided. The cord includes an internal layer of M wires, M having a value from 1 to 4, and an external layer of N wires. The cord is rubberized from within in situ. That is, during manufacture of the cord, the cord is rubberized from inside. According to the method, the internal layer is sheathed with rubber or a rubber compound by passing the internal layer through an extrusion head, and the N wires of the external layer are assembled around the sheathed internal layer to form a two-layer cord rubberized from the inside. The rubber is an unsaturated thermoplastic elastomer that is extruded in a molten state, and preferably is a thermoplastic styrene (TPS) type of thermoplastic elastomer, such as an SBS or an SIS block copolymer, for example.
Abstract:
This document provides flexible driveshaft devices. For example, this document provides flexible driveshaft devices that have bi-directionally balanced torsional stiffness properties. In some embodiments, the flexible driveshaft devices provided herein are utilized in medical device systems, such as endoluminal medical device systems. For example, in some embodiments the flexible driveshaft devices provided herein are utilized in endoluminal ultrasonic catheter systems.
Abstract:
A method of constructing a wire rope from plural outer strands and a core, the core having one or more core strands, each of the one or more core strands having plural core wires, the method comprising: swaging the core to laterally compress the core to an extent sufficient to cause concave deformation of at least some of the plural core wires; and closing the plural outer strands over the core to produce the wire rope.
Abstract:
A wire rope for use in a medical procedure includes a multi-strand coil formed by twisting multiple metal wires together. In the wire rope, gaps are located between the multiple metal wires along an axis of the multi-strand coil. The gaps between the multiple metal wires include a first gap and a second gap that differ in width.
Abstract:
Helically stranded thermoplastic polymer composite cable (10) includes a single wire (2) defining a center longitudinal axis, a first multiplicity of thermoplastic polymer composite wire (4) helically stranded around the single wire (2), and a second multiplicity of polymer composite wire (6) helically stranded around the first multiplicity of thermoplastic polymer composite wire (4). The helically stranded thermoplastic polymer composite cable (10) may be used as intermediate articles that are later incorporated into final articles, such as electrical power transmission cables, including underwater tethers and underwater umbilicals. Methods of making and using the helically stranded thermoplastic polymer composite cables are also described.
Abstract:
A hybrid flexible wire shaft having an inner portion with the characteristics of a push/pull shaft having at least one layer of wire groups helically wound on a core wire at a relatively high pitch angle, and an outer portion with the characteristics of a torsional transmission flexible shaft having two or more layers of wire groups wound on the central portion at a relatively low pitch angle. Each layer of the outer group is wound in a direction opposite to the wind direction of each adjacent layer of that group. In an alternate construction, the high and low pitch portions are reversed and an additional outer layer is provided which is wound in a direction opposite to the outermost layer of the high pitch portion.
Abstract:
A steel cord for the reinforcement of rubber articles comprises a core comprised of three steel filaments, a first sheath formed by twisting nine wave-formed steel filaments around the core, and a second sheath formed by twisting fifteen wave-formed steel filaments around the first sheath in a direction opposite to the twisting direction of the first sheath, in which a forming ratio F.sub.1 of each filament in the first sheath and a forming ratio F.sub.2 of each filament in the second sheath are within a range of 0.75-0.95, respectively, and satisfy Fi.sub.1
Abstract:
A telecommunication submarine cable of co-axial construction has a multistrand centre core imparting tensile strength to the cable, the core having adjacent layers of the core separated by a layer of soft metal.