Abstract:
A wire rope for a running wire, has a core rope, a plurality of side strands arranged at an outer periphery of the core rope to be twisted together therewith, and a resin spacer interposed between the side strands, the core rope including a core rope main body composed of a plurality of wires and a resin coating layer outwardly surrounding the core rope main body so that the resin coating layer separates the core rope main body from the side strands, each of the side strands being composed of a plurality of further wires, and the resin spacer being provided with contour corresponding to an outer layer of the further wires of the side strands and extending between the wires of the outer layer of the side strands.
Abstract:
Disclosed is a fiber reinforced plastic wire used as the overhead transmission cable. The fiber reinforced plastic wire for a strength member of an overhead transmission cable according to the present invention includes a wire having a predetermined diameter and composed of thermoset matrix resin; and a plurality of high strength fibers dispersed parallel to a longitudinal direction in an inside of the wire, the high strength fibers being surface-treated with a coupling agent to improve interfacial adhesion to the matrix resin. The fiber reinforced plastic wire of the present invention has the high tensile strength at the room temperature and the high temperature since its high strength fiber is surface-treated with a coupling agent. The fiber reinforced plastic wire can be also effectively used as the strength member in the overhead transmission cable since it has the excellent low coefficient of thermal expansion, etc. and is light-weight.
Abstract:
The present invention relates to a cable bead, the method of constructing the cable bead and a tire constructed by a process incorporating the cable bead wherein the cable bead is formed with a bead core wound from a single filament of bead core wire having a rubber or elastomeric coating, first annular wrap of bead wrapping wire helically wound around the bead core, and a coating of lubricant or fatty acid disposed about the bead core.
Abstract:
The present invention relates to a three-layered metal cable of construction L+M+N usable as a reinforcing element for a tire carcass reinforcement, comprising an inner layer C1 having L wires of diameter d1 with L being from 1 to 4, surrounded by an intermediate layer C2 of M wires of diameter d2 wound together in a helix at a pitch p2 with M being from 3 to 12, said layer C2 being surrounded by an outer layer C3 of N wires of diameter d3 wound together in a helix at a pitch p3 with N being from 8 to 20, said cable being characterised in that a sheath formed of a cross-linkable or cross-linked rubber composition based on at least one diene elastomer covers at least said layer C2. The invention furthermore relates to the articles or semi-finished products made of plastics material and/or rubber which are reinforced by such a multi-layer cable, in particular to tires used in industrial vehicles, more particularly heavy-vehicle tires and their carcass reinforcement plies.
Abstract:
A steel cord (10) adapted for the reinforcement of elastomers comprises: a core steel filament (12) with a core steel filament diameter dc and coated with a polymer (14); six intermediate steel filaments (16) with an intermediate steel filament diameter di smaller than or equal to the core steel filament diameter dc; these intermediate steel filaments (16) are twisted around the core steel filament (12); ten or eleven outer steel filaments (18) with an outer steel filament diameter do smaller than or equal to the intermediate steel filament diameter dl; these outer steel filaments (18) are twisted around the intermediate steel filaments (16), the outer steel filaments (18) are preformed in order to allow rubber penetration inside the core (10). The core steel filament (12), the intermediate steel filaments (16) and the outer steel filaments (18) all have a tensile strength at least 2600 MPa. The cord (10) has an outer diameter D according to following formula: D≦dc+2×di+2×do+0.1 wherein all diameters are expressed in millimeter (mm).
Abstract:
An inner layer rope has a plurality of inner layer strands, in which a plurality of steel wires are twisted together, with an elevator rope for suspending a car of an elevator apparatus. An inner layer cladding made of a resin covers a periphery of the inner layer rope. An outer layer is formed on a peripheral portion of the inner layer cladding. The outer layer has a plurality of outer layer strands in which a plurality of steel wires are twisted together. An outer layer cladding made of a high-friction resin material covers the periphery of the outer layer.
Abstract:
The present invention relates to a cable bead, the method of constructing the cable bead and a tire constructed by a process incorporating the cable bead wherein the cable bead is formed with a bead core wound from a single filament of bead core wire having a rubber or elastomeric coating, first annular wrap of bead wrapping wire helically wound around the bead core, and a coating of lubricant or fatty acid disposed about the bead core.
Abstract:
The invention includes a composite cable having a plurality of strands (10, 12) stranded around a composite synthetic core (5) with a concentric structure. The core (5) has a nucleus (11) formed by a bundle of parallel synthetic fibers extending along the cable longitudinal direction, and of a compact thermoplastic sheath (13) enclosing the nucleus (11) and serving as winding support for the strands.
Abstract:
A trolling reel for raising and lowering a weighted trolling wire having a temperature responsive element electrically coupled to the end thereof incorporates a small diameter trolling wire comprising an outer conductive sheath made of several strands of stainless steel wire surrounding an insulating layer positioned between the stainless steel sheath and a coaxially aligned center conductor. The trolling wire so formed provides a relatively high tensile strength wire for the weighted trolling line as well as displaying corrosive resistant properties for use in a saltwater environment. The wire also has the desired electrical properties for use in providing a temperature readout of the location of the end of the trolling line.
Abstract:
A PROCESS FOR MANUFACTURING A WEIGHTED ROPE OR LINE ADAPTED TO BE USED AS THE LEAD LINE FOR FISHING NETS IN FISHERIES. THE PRESENT MANUFACTURING PROCESS FOR WEIGHTED ROPE MAKING INVOLVES THE STEPS OF: PREPARING A WEIGHTED ELONGATED CORE COMPRISING AN ELONGATED METAL ROD COVERED CLOSELY WITH A TUBULAR MEMBER HAVING ELASTICITY, FLEXIBILITY AND SHEAR RESISTANCE, WITH SAID METAL CORE HAVING THEREON LONGITUDINALLY SPACED NOTCHED LOCATIONS AT WHICH THE ROD IS READY TO BE BROKEN UNDER TORSIONAL FORCE, TENSILE FORCE OR DEFLECTION FORCE; TWISTING OR BRAIDING THE WEIGHTED CORE TOGETHER WITH STRANDS IN THE FORM OF A ROPE; AND FINALLY EXERTING THE TORSIONAL FORCE, TENSILE FORCE OR DEFLECTION FORCE ON THE FINISHED ROPE THEREBY CUTTING THE METAL ROD AT SAID NOTCHED LOCATIONS SO AS TO PROVIDE A WEIGHTED ROPE HAVING WEIGHTING PIECES WHICH ARE EMBEDDED AND ARRANGED LONGITUDINALLY IN THE ROPE IN SUCH A MANNER THAT THEY ARE SPACED APART FROM EACH OTHER.