Abstract:
A variety of embodiments are disclosed, in both apparatus and method form, that relate to the use of fabric material in the manufacture of an air bag deployment system. In addition, fabric weakening is disclosed according to a technique that does not result in physical alteration of the fabric. This invention therefore includes an air bag cover for an air bag safety system for a vehicle comprising a fabric outer layer having a frontside and a backside and a substrate containing an opening wherein the opening has a periphery. The substrate is preferably formed by low pressure molding, wherein the fabric outer layer overlies the opening in the substrate, and wherein the fabric outer layer is weakened at a location that is adjacent or overlies the substrate opening periphery.
Abstract:
A low friction fabric constructed of a first layer of woven polyester fibers with an upper and lower woven surface attached to and adjacent a second layer of the same weave of polyester or similar fibers, the second layer having an upper and lower surface. Each of the woven layers comprising a straight yarn in the warp of the weave pattern with the weaves of the layers being oriented at a 90 degree angle to one another.
Abstract:
A variety of embodiments are disclosed, in both apparatus and method form, that relate to the use of fabric material in the manufacture of an air bag deployment system. In addition, fabric weakening is disclosed according to a technique that does not result in physical alteration of the fabric. This invention therefore includes an air bag cover for an air bag safety system for a vehicle comprising a fabric outer layer having a frontside and a backside and a substrate containing an opening wherein the opening has a periphery. The substrate is preferably formed by low pressure molding, wherein the fabric outer layer overlies the opening in the substrate, and wherein the fabric outer layer is weakened at a location that is adjacent or overlies the substrate opening periphery.
Abstract:
A variety of embodiments are disclosed, in both apparatus and method form, that relate to the use of fabric material in the manufacture of an air bag deployment system. In addition, fabric weakening is disclosed according to a technique that does not result in physical alteration of the fabric. This invention therefore includes an air bag cover for an air bag safety system for a vehicle comprising a fabric outer layer having a frontside and a backside and a substrate containing an opening wherein the opening has a periphery. The substrate is preferably formed by low pressure molding, wherein the fabric outer layer overlies the opening in the substrate, and wherein the fabric outer layer is weakened at a location that is adjacent or overlies the substrate opening periphery.
Abstract:
Bi-directional and multi-axial fabrics, fabric composites, ballistically resistant assemblies thereof, and the methods by which they are made. The fabrics are comprised of sets of strong, substantially parallel, unidirectional yarns lying in parallel planes, one above the other , with the direction of the yarns in a given plane rotated at an angle to the direction of the yarns in adjacent planes; and one or more sets of yarns having lower strength and higher elongation interleaved with the strong yarns.The fabrics of the invention provide superior ballistic effectiveness compared to ordinary woven and knitted fabrics but retain the ease of manufacture on conventional looms and knitting machines.
Abstract:
Bi-directional fabrics, fabric composites, ballistically resistant assemblies thereof, and the methods by which they are made. The bi-directional fabrics are comprised of a first set of strong, substantially parallel, unidirectional yarns lying in a first plane; a second set of strong, substantially parallel, unidirectional yarns lying in a second plane above the first plane and arranged transversely to the first set of yarns; and one or more sets of yarns having lower strength and higher elongation interleaved with the strong yarns. The bi-directional articles of the invention provide superior ballistic effectiveness compared to ordinary woven and knitted fabrics but retain the ease of manufacture on conventional looms and knitting machines.
Abstract:
The invention relates to a polymer composition comprising a biologically degradable polymer and a material from sea plants and/or shells of sea animals or at least two components selected from the group consisting of saccharides and the derivatives thereof, proteins, amino acids, vitamins and metal ions. The invention additionally relates to a molded article comprising said polymer composition. Said molded article may be used packaging material or fibrous material, in the form of fibrous material as mixing component for the production of yarns, and in the form of fibrous material for the production of nonwoven fabrics or woven fabrics.
Abstract:
Disclosed is a method of copolymerizing polyethylene glycol (PEG) into polyethylene terephthalate (PET) to achieve a polyethylene glycol-modified polyester composition that can be spun into filaments. The method includes the steps of copolymerizing polyethylene glycol into polyethylene terephthalate in the melt phase to form a copolyester composition, then polymerizing the copolyester composition in the solid phase until the copolyester is capable of achieving a melt viscosity that facilitates the spinning of filaments, and thereafter spinning filaments from the copolyester. A copolyester composition comprised of polyethylene glycol and polyethylene terephthalate is also disclosed. Fabrics made from fibers formed from the copolyester composition possess wetting, wicking, drying, flame-retardancy, static-dissipation, and soft hand properties that are superior to those of fabrics formed from conventional polyethylene terephthalate fibers of the same yarn and fabric construction.
Abstract:
Disclosed is a polyethylene glycol modified copolyester fiber that has exceptional moisture management characteristics and that can be formed into exceptionally comfortable fabrics. The copolyester fiber includes polyethylene terephthalate in an amount sufficient for the copolyester fiber to possess dimensional stability properties substantially similar to those of conventional, unmodified polyethylene terephthalate fibers, polyethylene glycol in an amount sufficient for the copolyester fiber to possess wicking properties that are superior to those of conventional, unmodified polyethylene terephthalate fibers, and chain branching agent in an amount less than about 0.0014 mole-equivalent branches per mole of standardized polymer.